Xiao Ming climbing

Time Limit: 1 Sec  

Memory Limit: 256 MB

题目连接

http://bestcoder.hdu.edu.cn/contests/contest_chineseproblem.php?cid=629&pid=1002

Description

小明因为受到大魔王的诅咒,被困到了一座荒无人烟的山上并无法脱离.这座山很奇怪:
这座山的底面是矩形的,而且矩形的每一小块都有一个特定的坐标(x,y)(x,y)和一个高度HH.
为了逃离这座山,小明必须找到大魔王,并消灭它以消除诅咒.
小明一开始有一个斗志值kk,如果斗志为0则无法与大魔王战斗,也就意味着失败.
小明每一步都能从他现在的位置走到他的(N,E,S,W)(N,E,S,W)四个位置中的一个,会消耗(abs(H_1-H_2))/k(abs(H1​​H2​​))/k的体力,然后消耗一点斗志。
大魔王很强大,为了留下尽可能多的体力对付大魔王,小明需要找到一条消耗体力最少的路径.
你能帮助小明算出最少需要消耗的体力吗.

Input

第一行输入一个整数T( 1 \leq T \leq 10 )T(1T10)
接下来有TT行TT组数据,每组数据有三个整数n,m,kn,m,k含义如题(1 \leq n,m \leq 50, 0 \leq k \leq 50)(1n,m50,0k50)
接下来有nn行,每行mm个字符,如果是数字则表示(i,j)(i,j)的高度H(0 \leq H \leq 9)H(0H9),'#'表示障碍
最后两行分别输入小明的坐标(x_1,y_1)(x1​​,y1​​)和大魔王的坐标(x_2,y_2)(x2​​,y2​​),小明和魔王都不在障碍上。

Output

每组数据对应输出满足要求的体力(保留两位小数)。
如果无法逃离,则输出"No \ AnswerNo Answer"

Sample Input

3
4 4 5
2134
2#23
2#22
2221
1 1
3 3
4 4 7
2134
2#23
2#22
2221
1 1
3 3
4 4 50
2#34
2#23
2#22
2#21
1 1
3 3

Sample Output

1.03
0.00
No Answer

HINT

 

题意

 

题解:

dp咯,三维dp

dp[i][j][k]表示我现在在i,j位置体力值为k的最小花费是多少

用类似spfa一样转移就好了

代码:

//qscqesze
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <bitset>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 500001
#define mod 1001
#define eps 1e-7
#define pi 3.1415926
int Num;
//const int inf=0x7fffffff;
const ll inf=999999999;
inline ll read()
{
    ll x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
//*************************************************************************************

string s[55];
int n,m;
int k;
double dp[60][60][60];;
struct node
{
    int x,y,z;
};
int inq[60][60][60];
int dx[4]={1,0,-1,0};
int dy[4]={0,1,0,-1};
int main()
{
    int t=read();
    while(t--)
    {
        memset(dp,0,sizeof(dp));
        memset(inq,0,sizeof(inq));
        n=read(),m=read();
        scanf("%d",&k);
        for(int i=0;i<n;i++)
            cin>>s[i];

        int x1,y1,x2,y2;
        cin>>x1>>y1>>x2>>y2;
        if(x1==x2&&y1==y2)
        {
            if(k==0)
                printf("No Answer\n");
            else
                printf("0.00\n");
            continue;
        }
        x1--,y1--,x2--,y2--;
        for(int i=0;i<60;i++)
        {
            for(int j=0;j<60;j++)
            {
                for(int k=0;k<60;k++)
                {
                    dp[i][j][k]=inf;
                }
            }
        }
        queue<node> Q;
        node ttt;
        ttt.x=x1,ttt.y=y1,ttt.z=k;
        Q.push(ttt);
        node now;
        now.x = x1,now.y = y1,now.z = k;
        dp[now.x][now.y][now.z]=0;
        inq[now.x][now.y][now.z]=1;
        while(!Q.empty())
        {
            now = Q.front();
            Q.pop();
            inq[now.x][now.y][now.z]=0;
            for(int i=0;i<4;i++)
            {
                node next = now;
                next.x+=dx[i];
                next.y+=dy[i];
                next.z--;
                if(next.z==0)
                    continue;
                if(next.x<0||next.x>=n)
                    continue;
                if(next.y<0||next.y>=m)
                    continue;
                if(s[next.x][next.y]=='#')
                    continue;
                double num1 = (int)(s[next.x][next.y]-'0');
                double num2 = (int)(s[now.x][now.y]-'0');
                double ss =  fabs(num1-num2)/now.z;
                if(dp[now.x][now.y][now.z]+ss<dp[next.x][next.y][next.z])
                {
                    dp[next.x][next.y][next.z]=dp[now.x][now.y][now.z]+ss;
                    if(!inq[next.x][next.y][next.z])
                    {
                        inq[next.x][next.y][next.z]=1;
                        Q.push(next);
                    }
                }
            }
        }
        double ans = inf;
        for(int i=1;i<60;i++)
            ans = min(ans,dp[x2][y2][i]);
        if(ans == inf)
            printf("No Answer\n");
        else
            printf("%.2lf\n",ans);
    }
}