题目连接:
http://acm.hdu.edu.cn/showproblem.php?pid=5833
Description
Zhu and 772002 are both good at math. One day, Zhu wants to test the ability of 772002, so he asks 772002 to solve a math problem.
But 772002 has a appointment with his girl friend. So 772002 gives this problem to you.
There are n numbers a1,a2,...,an. The value of the prime factors of each number does not exceed 2000, you can choose at least one number and multiply them, then you can get a number b.
How many different ways of choices can make b is a perfect square number. The answer maybe too large, so you should output the answer modulo by 1000000007.
Input
First line is a positive integer T , represents there are T test cases.
For each test case:
First line includes a number n(1≤n≤300),next line there are n numbers a1,a2,...,an,(1≤ai≤1018).
Output
For the i-th test case , first output Case #i: in a single line.
Then output the answer of i-th test case modulo by 1000000007.
Sample Input
2
3
3 3 4
3
2 2 2
Sample Output
Case #1:
3
Case #2:
3
Hint
题意
给你n个数,然后让你选择一些数,乘起来成为完全平方数,问你有多少种方案。
题解:
完全平方数,就是这个数的质因数的次数都是偶数次。
那么我们对于每一个质因数,我们就可以列一个mod2方程组,A[i][j]就表示第j个数的这个i素数是奇数还是偶数。
然后就是求这个方程解的个数。
其实就是2^自由变远的个数,再减去全部不选就好了。
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 2005;
const int mod = 1e9+7;
int p[2005],cnt,vis[2005],cas;
void init(){
for(int i=2;i<maxn;i++){
if(vis[i])continue;
p[cnt++]=i;
for(int j=i;j<maxn;j+=i)
vis[j]=1;
}
}
bitset<330> A[305];
void solve(){
for(int i=0;i<305;i++)
A[i].reset();
int n;
scanf("%d",&n);
for(int i=0;i<n;i++)
{
long long x;
scanf("%lld",&x);
for(int j=0;j<cnt;j++)
{
if(x%p[j]==0)
{
int flag = 0;
while(x%p[j]==0)
{
x/=p[j];
flag^=1;
}
A[j][i]=flag;
}
}
}
int i=0,j=0;
for(i=0;i<n;i++)
{
int id=-1;
for(int k=j;k<cnt;k++)
{
if(A[k][i])
{
id=k;
break;
}
}
if(id==-1)continue;
swap(A[j],A[id]);
for(int k=j+1;k<cnt;k++)
{
if(A[k][i])
A[k]^=A[j];
}
j++;
}
int ans = 1;
for(int i=0;i<n-j;i++)
ans = ans * 2 % mod;
printf("Case #%d:\n%d\n",++cas,ans-1);
}
int main(){
init();
int t;
scanf("%d",&t);
while(t--){
solve();
}
}