一、获取代码方式


二、数字图像处理简介

图像处理基础教程链接

1 ​​【基础教程】基于matlab图像处理(表示方法+数据结构+基本格式+类型转换+读取+点运算+代数运算)【含Matlab源码 834期】​

2 ​​【基础教程】基于matlab图像处理(读写+显示+运算+转换+变换+增强+滤波+分析+统计)【含Matlab源码 144期】​

3 ​​【基础教程】基于matlab图像增强+复原+分割【含Matlab源码 056期】​

三、部分源代码

function compareimages(A,ATitle,B,BTitle)
%COMPAREIMAGES Displays two images side by side with linked axes
% COMPAREIMAGES(A,B) displays images A and B, where A and B are either
% grayscale or RGB color images with values in [0,1]. The images are
% displayed with linked axes for convenient panning and zooming.
%
% COMPAREIMAGES(A,'A title',B,'B title') specifies titles above the
% images.
%
% See also linkaxes.

% Pascal Getreuer 2009

if nargin == 2
B = ATitle;
ATitle = '';
BTitle = '';
elseif nargin < 4
error('Must have 2 or 4 input arguments.');
end

ax(1) = subplot(1,2,1);
hold off

if ndims(A) == 2
image(A*255);
colormap(gray(256));
elseif ndims(A) == 3
image(min(max(A,0),1));
end

set(gca,'Units','Normalized','Position',[0,0.1,0.5,0.8]);
axis image
axis off
title(ATitle);
zoom;

ax(2) = subplot(1,2,2);
hold off

if ndims(B) == 2
image(B*255);
colormap(gray(256));
elseif ndims(B) == 3
image(min(max(B,0),1));
end

set(gca,'Units','Normalized','Position',[0.5,0.1,0.5,0.8]);
axis image
axis off
title(BTitle);
%%% Demo of image deconvolution %%%

BlurRadius = 3;
NoiseLevel = 0.005;
lambda = 4e3;

uexact = double(imread('einstein.png'))/255;

% Construct the blur filter
[x,y] = meshgrid(1:size(uexact,2),1:size(uexact,1));
psf = double((x-size(uexact,2)/2).^2 ...
+ (y-size(uexact,1)/2).^2 <= BlurRadius^2);
psf = psf/sum(psf(:));

% Simulate a noisy and blurry image
f = real(ifft2(fft2(uexact).*fft2(fftshift(psf))));
f = f + randn(size(uexact))*NoiseLevel;

% Deblur
u = tvdeconv(f,lambda,psf);unction u = tvdenoise(f,lambda,varargin)
%TVDENOISE Total variation image denoising.
% u = TVDENOISE(f,lambda,model) denoises grayscale, color, or arbitrary
% multichannel image f using total variation regularization. Parameter
% lambda controls the strength of the noise reduction: smaller lambda
% implies stronger denoising.
%
% The model parameter specifies the noise model (case insensitive):
% 'Gaussian' or 'L2' - (default) The degradation model for additive
% white Gaussian noise (AWGN),
% f = (exact) + (Gaussian noise).
% 'Laplacian' or 'L1' - The degradation model assumes impulsive noise,
% for example, salt & pepper noise.
% 'Poisson' - Each pixel is an independent Poisson random
% variable with mean equal to the exact value.
%
% TVDENOISE(...,Tol,MaxIter) specify the stopping tolerance and the
% maximum number of iterations.
%
% See also tvdeconv, tvinpaint, and tvrestore.

四、运行结果

【图像处理】基于matlab全变差图像处理【含Matlab源码 457期】_参考文献

五、matlab版本及参考文献

1 matlab版本

2014a

2 参考文献

[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.

[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.

[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.

[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.

[5]陈浩,方勇,朱大洲,王成,陈子龙.基于蚁群算法的玉米植株热红外图像边缘检测[J].农机化研究. 2015,37(06)