一、遗传算法简介

1 引言
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_2d
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_遗传算法_02
2 遗传算法理论
2.1 遗传算法的生物学基础
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_动态规划_03
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_2d_04
2.2 遗传算法的理论基础
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_算法_05
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_matlab_06
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_2d_07
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_2d_08
2.3 遗传算法的基本概念
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_遗传算法_09
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_2d_10
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_2d_11
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_matlab_12
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_2d_13
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_动态规划_14
2.4 标准的遗传算法
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_matlab_15
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_2d_16
2.5 遗传算法的特点
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_算法_17
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_算法_18
2.6 遗传算法的改进方向
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_2d_19
3 遗传算法流程
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_动态规划_20
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_2d_21
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_动态规划_22
4 关键参数说明
【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_动态规划_23

二、部分源代码

function varargout = newGUI(varargin)
% NEWGUI MATLAB code for newGUI.fig
%      NEWGUI, by itself, creates a new NEWGUI or raises the existing
%      singleton*.
%
%      H = NEWGUI returns the handle to a new NEWGUI or the handle to
%      the existing singleton*.
%
%      NEWGUI('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in NEWGUI.M with the given input arguments.
%
%      NEWGUI('Property','Value',...) creates a new NEWGUI or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before newGUI_OpeningFcn gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to newGUI_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help newGUI

% Last Modified by GUIDE v2.5 02-Feb-2020 22:22:09

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @newGUI_OpeningFcn, ...
                   'gui_OutputFcn',  @newGUI_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT


% --- Executes just before newGUI is made visible.
function newGUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to newGUI (see VARARGIN)

% Choose default command line output for newGUI
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes newGUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = newGUI_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;



function edit1_Callback(hObject, eventdata, handles)
% hObject    handle to edit1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit1 as text
%        str2double(get(hObject,'String')) returns contents of edit1 as a double


% --- Executes during object creation, after setting all properties.
function edit1_CreateFcn(hObject, eventdata, handles)
% hObject    handle to edit1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end



function edit2_Callback(hObject, eventdata, handles)
% hObject    handle to edit2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit2 as text
%        str2double(get(hObject,'String')) returns contents of edit2 as a double


% --- Executes during object creation, after setting all properties.
function edit2_CreateFcn(hObject, eventdata, handles)
% hObject    handle to edit2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end



function edit3_Callback(hObject, eventdata, handles)
% hObject    handle to edit3 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit3 as text
%        str2double(get(hObject,'String')) returns contents of edit3 as a double


% --- Executes during object creation, after setting all properties.
function edit3_CreateFcn(hObject, eventdata, handles)
% hObject    handle to edit3 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
    set(hObject,'BackgroundColor','white');
end


% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)

global G;
global X_min_path;
global Y_min_path;
global Min_path_value;
global Mean_path_value;
global colorbar1;

NP=get(handles.edit4,'String');% 种群数量
max_gen=get(handles.edit3,'String');
a=get(handles.edit1,'String');
b=get(handles.edit2,'String');
NP=str2double(NP);
a=str2double(a);
b=str2double(b);
max_gen=str2double(max_gen);
% disp([NP,a,b])
% disp(G)
 
p_start = 0;    % 起始序号
p_end = size(G,1)*size(G,2)-1;    % 终止序号


%NP = 200;      % 种群数量
%max_gen = 50;  % 最大进化代数
pc = 0.8;      % 交叉概率
pm = 0.2;      % 变异概率

%init_path = [];
z = 1;  
new_pop1 = {}; % 元包类型路径
[y, x] = size(G);
% 起点所在列(从左到右编号1.2.3...)
xs = mod(p_start, x) + 1; 
% 起点所在行(从上到下编号行1.2.3...)
ys = fix(p_start / x) + 1;
% 终点所在列、行
xe = mod(p_end, x) + 1;
ye = fix(p_end / x) + 1;

% 种群初始化step1,必经节点,从起始点所在行开始往上,在每行中挑选一个自由栅格,构成必经节点
pass_num = ye - ys + 1;
% disp(pass_num)
% disp(NP);
pop = zeros(NP, pass_num);
for i = 1 : NP
    pop(i, 1) = p_start;
    j = 1;
    % 除去起点和终点
    for yk = ys+1 : ye-1
        j = j + 1;
        % 每一行的可行点
        can = []; 
        for xk = 1 : x
            % 栅格序号
            no = (xk - 1) + (yk - 1) * x;
            if G(yk, xk) == 0
                % 把点加入can矩阵中
                can = [can no];
            end
        end
        can_num = length(can);
        % 产生随机整数
        index = randi(can_num);
        % 为每一行加一个可行点
        pop(i, j) = can(index);
    end

三、运行结果

【路径规划】基于matlab GUI改进的遗传算法机器人栅格地图避障路径规划【含Matlab 703期】_动态规划_24

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
《智能优化算法及其MATLAB实例(第2版)》包子阳 余继周 杨杉著 电子工业出版社