女主宣言
kube-proxy当前支持三种方式实现负载均衡,分别是: userspace, iptables, IPVS. 但前两者随着Service的数量增长,存在性能的瓶颈,在生产环境是不能接受的。所以本篇文章主要对IPVS模式进行源码分析。
PS:丰富的一线技术、多元化的表现形式,尽在“360云计算”,点关注哦!
kube-proxy 整体逻辑结构
这张时序图描述了kube-proxy的整体逻辑结构,由于kub-proxy组件和其它的kube-* 组件一样都是使用pflag和cobra库去构建命令行应用程序。所以先简单介绍下该包的基本使用方式:
func main() { command := &cobra.Command{ Use: "echo [string to echo]", Short: "Echo anything to the screen", Long: `echo is for echoing anything back.Echo works a lot like print, except it has a child command.`, Args: cobra.MinimumNArgs(1), Run: func(cmd *cobra.Command, args []string) { fmt.Println("Print: " + strings.Join(args, " ")) }, }
command.Execute()}
上面这段代码就是使用cobra包的一个最简单的例子,首先初始化Command结构,其中该结构中的Run就是最终要执行的真正逻辑。当初始化完成Command之后,通过commnad.Execute去启动应用程序。
现在看上面的图就能比较直观的理解程序的启动机制了,这张图的整体过程就是对Commnad结构中的Run进行核心逻辑实现。也就是说kube-proxy核心逻辑入口就是从这里开始(Command.Run)。
在Command.Run中主要做了如下几件事,看下面的代码:
// Run runs the specified ProxyServer.func (o *Options) Run() error { defer close(o.errCh) //.... proxyServer, err := NewProxyServer(o) if err != nil { return err }
if o.CleanupAndExit { return proxyServer.CleanupAndExit() }
o.proxyServer = proxyServer return o.runLoop()}
1.对ProxyServer实例进行初始化。
2.如果在启动kube-proxy服务时,CleanupAndExit参数设置为true,则会将userspace, iptables, ipvs三种模式之前设置的所有规则清除掉,然后直接退出。
3.如果在启动kube-proxy服务时,CleanupAndExit参数设置为flase,则会调用runLoop来启动ProxyServer服务。
首先先来看看ProxyServer的结构定义:
type ProxyServer struct { Client clientset.Interface EventClient v1core.EventsGetter IptInterface utiliptables.Interface IpvsInterface utilipvs.Interface IpsetInterface utilipset.Interface execer exec.Interface Proxier proxy.ProxyProvider Broadcaster record.EventBroadcaster Recorder record.EventRecorder ConntrackConfiguration kubeproxyconfig.KubeProxyConntrackConfiguration Conntracker Conntracker // if nil, ignored ProxyMode string NodeRef *v1.ObjectReference CleanupIPVS bool MetricsBindAddress string EnableProfiling bool OOMScoreAdj *int32 ConfigSyncPeriod time.Duration HealthzServer *healthcheck.HealthzServer}
在ProxyServer结构中包含了与kube-apiserver通信的Client、操作Iptables的IptInterface、操作IPVS的IpvsInterface、操作IpSet的IpsetInterface,以及通过ProxyMode参数获取基于userspace, iptables, ipvs三种方式中的哪种使用的Proxier。
接下来重点介绍基于ipvs模式实现的Proxier, 在ipvs模式下Proxier结构的定义:
type Proxier struct { endpointsChanges *proxy.EndpointChangeTracker serviceChanges *proxy.ServiceChangeTracker
//... serviceMap proxy.ServiceMap endpointsMap proxy.EndpointsMap portsMap map[utilproxy.LocalPort]utilproxy.Closeable //... syncRunner *async.BoundedFrequencyRunner // governs calls to syncProxyRules
//... iptables utiliptables.Interface ipvs utilipvs.Interface ipset utilipset.Interface exec utilexec.Interface //... ipvsScheduler string}
在Proxier结构中,先介绍下async.BoundedFrequencyRunner,其它的在介绍ProxyServer.Run的时候介绍。
BoundedFrequencyRunner的定义结构如下:
type BoundedFrequencyRunner struct { name string // the name of this instance minInterval time.Duration // the min time between runs, modulo bursts maxInterval time.Duration // the max time between runs
run chan struct{} // try an async run
mu sync.Mutex // guards runs of fn and all mutations fn func() // function to run lastRun time.Time // time of last run timer timer // timer for deferred runs limiter rateLimiter // rate limiter for on-demand runs}
BoundedFrequencyRunner结构中的run会异步的去定期的执行任务fn,比如定期的执行proxier.syncProxyRules去创建或者更新VirtuaServer和RealServer并将VirtualServer的VIP绑定到dummy interface(kube-ipvs0)。
下面是在NewProxier方法中初始化BoundedFrequencyRunner对象的示例:
proxier.syncRunner = async.NewBoundedFrequencyRunner( "sync-runner", proxier.syncProxyRules, minSyncPeriod, syncPeriod, burstSyncs)
其中:
minSyncPeriod: 规则最小的更新时间
syncPeriod: 规则最大更新时间
proxier.syncProxyRules: 同步规则的实现函数(也是kube-proxy基于ipvs同步规则的核心实现)
ProxyServer启动流程
这部分介绍下ProxyServer.Run的逻辑实现,ProxyServer启动流程如下图所示:
在启动过程中,主要做了下面这几件事情:
1.启动健康检查服务HealthzServer.
2.启动暴露监控指标的MetricsServer.
3.如果需要调整系统的conntrack相关参数,则对系统的conntrack进行参数调整.
4.创建一个informerFactory实例,后面去通过informerFactory获取kubernetes的各类资源数据.
5.创建一个ServiceConfig实例,这个实例主要作用是实时的WATCH kubernetes Service资源的变化,并加入队列中,用于后续对变化的Service进行规则同步。
6.注册servier event hander到Proxier.
7.启动serviceConfig.
接下来详细的介绍下[4-7]这几步的流程。
ServiceConfig的结构定义如下:
type ServiceConfig struct { listerSynced cache.InformerSynced eventHandlers []ServiceHandler}
ServiceHandler的结构定义如下:
type ServiceHandler interface { // OnServiceAdd is called whenever creation of new service object // is observed. OnServiceAdd(service *v1.Service) // OnServiceUpdate is called whenever modification of an existing // service object is observed. OnServiceUpdate(oldService, service *v1.Service) // OnServiceDelete is called whenever deletion of an existing service // object is observed. OnServiceDelete(service *v1.Service) // OnServiceSynced is called once all the initial even handlers were // called and the state is fully propagated to local cache. OnServiceSynced()}
创建ServiceConfig实例对象的具体实现如下:
func NewServiceConfig(serviceInformer coreinformers.ServiceInformer, resyncPeriod time.Duration) *ServiceConfig { result := &ServiceConfig{ listerSynced: serviceInformer.Informer().HasSynced, }
serviceInformer.Informer().AddEventHandlerWithResyncPeriod( cache.ResourceEventHandlerFuncs{ AddFunc: result.handleAddService, UpdateFunc: result.handleUpdateService, DeleteFunc: result.handleDeleteService, }, resyncPeriod, )
return result}
-
首先通过执行serviceInformer.Informer().HasSynced来将kubernetes下的所有Service资源同步到缓存listerSynced中。
-
其次为AddEventHandlerWithResyncPeriod添加针对Service对象,添加,更新,删除的事件触发函数。当Service有相应的触发动作,就会调用相应的函数:handleAddService、handleUpdateService和handleDeleteService。
我们看看handleAddService触发函数的实现逻辑,具体代码如下:
func (c *ServiceConfig) handleAddService(obj interface{}) { service, ok := obj.(*v1.Service) if !ok { utilruntime.HandleError(fmt.Errorf("unexpected object type: %v", obj)) return } for i := range c.eventHandlers { klog.V(4).Info("Calling handler.OnServiceAdd") c.eventHandlers[i].OnServiceAdd(service) }}
当watch到kubernetes集群中有新的Service被创建之后,会触发handleAddService函数,并在该函数中遍历eventHandlers分别去调用OnServiceAdd来对proxier结构中的serviceChanages进行更新并去同步相应的规则。
OnServiceAdd的具体实现逻辑如下:
// OnServiceAdd is called whenever creation of new service object is observed.func (proxier *Proxier) OnServiceAdd(service *v1.Service) { proxier.OnServiceUpdate(nil, service)}
// OnServiceUpdate is called whenever modification of an existing service object is observed.func (proxier *Proxier) OnServiceUpdate(oldService, service *v1.Service) { if proxier.serviceChanges.Update(oldService, service) && proxier.isInitialized() { proxier.syncRunner.Run() }}
ServiceChangeTracker的结构定义如下:
// ServiceChangeTracker carries state about uncommitted changes to an arbitrary number of// Services, keyed by their namespace and name.type ServiceChangeTracker struct { // lock protects items. lock sync.Mutex // items maps a service to its serviceChange. items map[types.NamespacedName]*serviceChange // makeServiceInfo allows proxier to inject customized information when processing service. makeServiceInfo makeServicePortFunc // isIPv6Mode indicates if change tracker is under IPv6/IPv4 mode. Nil means not applicable. isIPv6Mode *bool recorder record.EventRecorder}
serviceChanage的结构定义如下:
// serviceChange contains all changes to services that happened since proxy rules were synced. For a single object,// changes are accumulated, i.e. previous is state from before applying the changes,// current is state after applying all of the changes.type serviceChange struct { previous ServiceMap current ServiceMap}
到这里在回过头来看上面的基于IPVS实现的Proxier的整体流程就完全通了,ProxyServer.Run函数在启动时,通过kubernetes LIST/WATCH机制去实时的感知kubernetes集群Service资源的变化,然后不断的在更新Proxier结构中的ServiceChanges,然后将变化的Service保存在ServiceChanges结构中的ServiceMap中,给后续的async.BoundedFrequencyRunner去执行同步规则函数syncProxyRules来使用。
8.endpointConfig的实现机制和serviceConfig的机制完全一样,这里就不在详细的介绍了。
9.上面做的所有预处理工作,会在informerFactory.Start这步生效。
10.birthCry的作用就是通过event的方式通知kubernetes, kube-proxy这边的所有准备工作都处理好了,我要启动了。
func (s *ProxyServer) birthCry() { s.Recorder.Eventf(s.NodeRef, api.EventTypeNormal, "Starting", "Starting kube-proxy.")}
11.最终通过SyncLoop启动kube-proxy服务,并立刻执行syncProxyRules先来一遍同步再说.之后便会通过异步的方式定期的去同步IPVS, Iptables, Ipset的规则。
而syncProxyRules函数是kube-proxy实现的核心。主体逻辑是遍历ServiceMap并遍历ServiceMap下的endpointsMap及创建的Service类型(如: CLusterIP, Loadbalancer, NodePort)去分别创建相应的IPVS规则。
syncProxyRules的函数实现定义如下:
func (proxier *Proxier) syncProxyRules() { //.....
// Build IPVS rules for each service. for svcName, svc := range proxier.serviceMap { //......
// Handle traffic that loops back to the originator with SNAT. for _, e := range proxier.endpointsMap[svcName] { //.... }
// Capture the clusterIP. // ipset call entry := &utilipset.Entry{ IP: svcInfo.ClusterIP().String(), Port: svcInfo.Port(), Protocol: protocol, SetType: utilipset.HashIPPort, } // add service Cluster IP:Port to kubeServiceAccess ip set for the purpose of solving hairpin. // proxier.kubeServiceAccessSet.activeEntries.Insert(entry.String()) if valid := proxier.ipsetList[kubeClusterIPSet].validateEntry(entry); !valid { klog.Errorf("%s", fmt.Sprintf(EntryInvalidErr, entry, proxier.ipsetList[kubeClusterIPSet].Name)) continue } proxier.ipsetList[kubeClusterIPSet].activeEntries.Insert(entry.String()) // ipvs call serv := &utilipvs.VirtualServer{ Address: svcInfo.ClusterIP(), Port: uint16(svcInfo.Port()), Protocol: string(svcInfo.Protocol()), Scheduler: proxier.ipvsScheduler, } // Set session affinity flag and timeout for IPVS service if svcInfo.SessionAffinityType() == v1.ServiceAffinityClientIP { serv.Flags |= utilipvs.FlagPersistent serv.Timeout = uint32(svcInfo.StickyMaxAgeSeconds()) } // We need to bind ClusterIP to dummy interface, so set `bindAddr` parameter to `true` in syncService() if err := proxier.syncService(svcNameString, serv, true); err == nil { activeIPVSServices[serv.String()] = true activeBindAddrs[serv.Address.String()] = true // ExternalTrafficPolicy only works for NodePort and external LB traffic, does not affect ClusterIP // So we still need clusterIP rules in onlyNodeLocalEndpoints mode. if err := proxier.syncEndpoint(svcName, false, serv); err != nil { klog.Errorf("Failed to sync endpoint for service: %v, err: %v", serv, err) } } else { klog.Errorf("Failed to sync service: %v, err: %v", serv, err) }
// Capture externalIPs. for _, externalIP := range svcInfo.ExternalIPStrings() { //.... }
// Capture load-balancer ingress. for _, ingress := range svcInfo.LoadBalancerIPStrings() { //..... }
if svcInfo.NodePort() != 0 { //.... } }
// sync ipset entries for _, set := range proxier.ipsetList { set.syncIPSetEntries() }
// Tail call iptables rules for ipset, make sure only call iptables once // in a single loop per ip set. proxier.writeIptablesRules()
// Sync iptables rules. // NOTE: NoFlushTables is used so we don't flush non-kubernetes chains in the table. proxier.iptablesData.Reset() proxier.iptablesData.Write(proxier.natChains.Bytes()) proxier.iptablesData.Write(proxier.natRules.Bytes()) proxier.iptablesData.Write(proxier.filterChains.Bytes()) proxier.iptablesData.Write(proxier.filterRules.Bytes())
}
总结
kube-proxy的代码逻辑还是比较简洁的,整体的思想就是kube-proxy服务去watch kubernetes集群的Service和Endpoint对象,当这两个资源对象有状态变化时,会把它们保存在ServiceMap和EndPonintMap中,然后会通过async.BoundedFrequencyRunner去异步的执行syncProxyRules去下发规则。
360云计算
由360云平台团队打造的技术分享公众号,内容涉及数据库、大数据、微服务、容器、AIOps、IoT等众多技术领域,通过夯实的技术积累和丰富的一线实战经验,为你带来最有料的技术分享