✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

1.1问题重述

森林火灾时常见诸报端。森林失火,消防站接到报警后派多少消防队员去救火?这是森林防火部门的一个问题。人数多则火灾损失小但救援费用可能大,例如器材消耗,消防员工资等都会增加,反之则火灾损失大而救援费用可能小.

当然在接到报警后消防部门派出队员越多,灭火速度越快,森林损失越小,但同时救援开支会越大,所以需要综合考虑森林损失费和救援费与消防队员人数之间的关系,以总费用最小来确定派出队员的数目。

1.2问题分析

如上所述,森林救火问题与派出的消防队员的人数密切相关,应综合考虑森林损失费和救援费,以总费用最小为目标来确定派出的消防队员的人数使总费用最小。由此看来是一个优化问题。


图1:森林救火问题分析

损失费通常正比于森林烧毁的面积,而烧毁面积与失火、灭火(指火被扑灭)的时间有关,灭火时间又取决于消防队员数目,队员越多灭火越快.救援费除与消防队员人数有关外,也与灭火时间长短有关。

救援费可分为两部分;一部分是灭火器材的消耗及消防队员的薪金等,与队员人数及灭火所用的时间均有关,另一部分是运送队员和器材等一次性支出,只与队员人数有关.

【元胞自动机】基于元胞自动机模拟森林救火问题附matlab代码_布局优化

【元胞自动机】基于元胞自动机模拟森林救火问题附matlab代码_路径规划_02

【元胞自动机】基于元胞自动机模拟森林救火问题附matlab代码_布局优化_03

【元胞自动机】基于元胞自动机模拟森林救火问题附matlab代码_布局优化_04

【元胞自动机】基于元胞自动机模拟森林救火问题附matlab代码_无人机_05

【元胞自动机】基于元胞自动机模拟森林救火问题附matlab代码_路径规划_06

⛄ 部分代码

function drawPath(path,G,flag)
%%%%
xGrid=size(G,2);
drawShanGe(G,flag)
hold on
set(gca,'XtickLabel','')
set(gca,'YtickLabel','')
L=size(path,1);
Sx=path(1,1)-0.5;
Sy=path(1,2)-0.5;
plot(Sx,Sy,'ro','MarkerSize',5,'LineWidth',5);   % 起点
for i=1:L-1
    plot([path(i,2) path(i+1,2)]-0.5,[path(i,1) path(i+1,1)]-0.5,'k-','LineWidth',1.5,'markersize',10)
    hold on
end

Ex=path(end,1)-0.5;
Ey=path(end,2)-0.5;

plot(Ex,Ey,'gs','MarkerSize',5,'LineWidth',5);   % 终点

⛄ 运行结果

首先初始化模型的参数值,平均灭火速度设为,火灾蔓延速度设为,开始救火的时刻为3h。相关费用分别为烧毁单位面积损失费 ,每个消防员单位时间费用,每个队员一次性支出为2000

对比分析发现,派出38名消防队员相比20名,灭火的时刻提前了,森林烧毁的面积减少了,有效地遏制住火势的蔓延,使得输出结果中的损失费大大减少,由与派出队员的增加,救援费对应增加,但是得到的总费用无疑是最小的。

【元胞自动机】基于元胞自动机模拟森林救火问题附matlab代码_无人机_07

⛄ 参考文献


⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合