✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

近年来,可逆信息隐藏(RDH)是信息安全领域的一个新研究热点,受到了研究人员的越来越多的关注。现有的大多数RDH方案都没有完全考虑到自然图像的纹理会影响嵌入失真。将数据嵌入图像的平滑区域所导致的图像失真要比不平滑区域小得多,这主要是因为在平滑区域中嵌入其他数据对应于直方图移位中的无效移位像素(ISP)更少。因此,我们提出了一种基于图像纹理的RDH方案,以减少直方图移位中像素的无效移位。具体来说,首先,通过棋盘格图案将封面图像分为两个子图像,然后计算每个子图像的波动值。最后,可以将附加数据优先地嵌入到具有较小波动值的子图像区域中。实验结果表明,与现有的一些RDH方案相比,该方法具有更高的容量和更好的隐秘图像质量。

⛄ 部分代码

function varargout = arith07(xC)

% Arith07     Arithmetic encoder or decoder 

% Vectors of integers are arithmetic encoded, 

% these vectors are collected in a cell array, xC.

% If first argument is a cell array the function do encoding,

% else decoding is done.

%

% [y, Res] = Arith07(xC);                    % encoding

% y = Arith07(xC);                           % encoding

% xC = Arith07(y);                           % decoding

% ------------------------------------------------------------------

% Arguments:

%  y        a column vector of non-negative integers (bytes) representing 

%           the code, 0 <= y(i) <= 255. 

%  Res      a matrix that sum up the results, size is (NumOfX+1)x4

%           one line for each of the input sequences, the columns are

%           Res(:,1) - number of elements in the sequence

%           Res(:,2) - unused (=0) 

%           Res(:,3) - bits needed to code the sequence

%           Res(:,4) - bit rate for the sequence, Res(:,3)/Res(:,1)

%           Then the last line is total (which include bits needed to store NumOfX)

%  xC       a cell array of column vectors of integers representing the

%           symbol sequences. (should not be to large integers)

%           If only one sequence is to be coded, we must make the cell array

%           like: xC=cell(2,1); xC{1}=x; % where x is the sequence

% ------------------------------------------------------------------

% Note: this routine is extremely slow on Matlab version 5.x and earlier


% SOME NOTES ON THE FUNCTION  

% This function is almost like Arith06, but some important changes have

% been done. Arith06 is buildt almost like Huff06, but this close connection

% is removed in Arith07. This imply that to understand the way Arith06

% works you should read the documentation for Huff06 and especially the

% article on Recursive Huffman Coding. To understand how Arith07 works it is 

% only confusing to read about the recursive Huffman coder, Huff06.

%

% Arith07 code each of the input sequences in xC in sequence, the

% method used for each sequence depends on what kind (xType) the 

% sequence is. We have

%  xType  Explanation

%   0     Empty sequence (L=0)

%   1     Only one symbol (L=1) and x>1

%   9     Only one symbol (L=1) and x=0/1

%  11     Only one symbol (L=1) and x<0

%   2     all symbols are equal, L>1, x(1)=x(2)=...=x(L)>1

%   8     all symbols are equal, L>1, x(1)=x(2)=...=x(L)=0/1

%  10     all symbols are equal, L>1, x(1)=x(2)=...=x(L)<0

%   3     non-negative integers, 0<=x(l)<=1000

%   4     not to large integers, -1000<=x(l)<=1000

%   5     large non-negative integers possible, 0<=x(l)

%   6     also possible with large negative numbers

%   7     A binary sequence, x(l)=0/1. 

% Many functions are defined in this m-file:

%  PutBit, GetBit     read and write bit from/to bitstream

%  PutABit, GetABit   Arithmetic encoding of a bit, P{0}=P{1}=0.5

%  PutVLIC, GetVLIC   Variable Length Integer Code

%  PutS(x,S,C), GetS(S,C)  A symbol x, which is in S, is aritmetic coded

%                     according to the counts given by C.

%                     Ex: A binary variable with the givene probabilities

%                     P{0}=0.8 and P{1}=0.2, PutS(x,[0,1],[4,1]).

%  PutN(x,N), GetN(N) Arithmetic coding of a number x in range 0<=x<=N where

%                     we assume equal probability, P{0}=P{1}=...=P{N}=1/(N+1)


%----------------------------------------------------------------------

% Copyright (c) 1999-2001.  Karl Skretting.  All rights reserved.

% Hogskolen in Stavanger (Stavanger University), Signal Processing Group

% Mail:  karl.skretting@tn.his.no   Homepage:  http://www.ux.his.no/~karlsk/

% HISTORY:

% Ver. 1.0  19.05.2001  KS: Function made (based on Arith06 and Huff06)

%----------------------------------------------------------------------


% these global variables are used to read from or write to the compressed sequence

global y Byte BitPos      

% and these are used by the subfunctions for arithmetic coding

global high low range ub hc lc sc K code


Mfile='Arith07';

K=24;  % number of bits to use in integers  (8 <= K <= 24)

Display=1;      % display progress and/or results


% check input and output arguments, and assign values to arguments

if (nargin < 1); 

   error([Mfile,': function must have input arguments, see help.']); 

end

if (nargout < 1); 

   error([Mfile,': function must have output arguments, see help.']); 

end


if (~iscell(xC))

   Encode=0;Decode=1;

   y=xC(:);            % first argument is y

   y=[y;0;0;0;0];      % add some zeros to always have bits available

else

   Encode=1;Decode=0;

   NumOfX = length(xC);

end


Byte=0;BitPos=1;         % ready to read/write into first position

low=0;high=2^K-1;ub=0;   % initialize the coder

code=0;

% we just select some probabilities which we belive will work quite well   

TypeS=[  3,  4,  5,  7,  6,  1,  9, 11,  2,  8, 10,  0];

TypeC=[100, 50, 50, 50, 20, 10, 10, 10,  4,  4,  2,  1];


if Encode

   Res=zeros(NumOfX,4);

   % initalize the global variables

   y=zeros(10,1);    % put some zeros into y initially

   % start encoding, first write VLIC to give number of sequences

   PutVLIC(NumOfX);

   % now encode each sequence continuously

   Ltot=0;

   for num=1:NumOfX

      x=xC{num};

      x=full(x(:));        % make sure x is a non-sparse column vector

      L=length(x);

      Ltot=Ltot+L;

      y=[y(1:Byte);zeros(50+2*L,1)];  % make more space available in y

      StartPos=Byte*8-BitPos+ub;      % used for counting bits

      % find what kind of sequenqe we have, save this in xType

      if (L==0)

         xType=0;

      elseif L==1

         if (x==0) | (x==1)       % and it is 0/1

            xType=9; 

         elseif (x>1)             % and it is not 0/1 (and positive)

            xType=1;

         else                     % and it is not 0/1 (and negative) 

            xType=11;

         end

      else

         % now find some more info about x 

         maxx=max(x);

         minx=min(x);

         rangex=maxx-minx+1;

         if (rangex==1)                    % only one symbol

            if (maxx==0) | (maxx==1)       % and it is 0/1

               xType=8; 

            elseif (maxx>1)                % and it is not 0/1 (and positive)

               xType=2;

            else                           % and it is not 0/1 (and negative) 

               xType=10;

            end

         elseif (minx == 0) & (maxx == 1)   % a binary sequence

            xType=7;

         elseif (minx >= 0) & (maxx <= 1000)

            xType=3;

         elseif (minx >= 0) 

            xType=5;

         elseif (minx >= -1000) & (maxx <= 1000)

            xType=4;

         else

            xType=6;

         end

      end        % if (L==0)

      if Display >= 2

         disp([Mfile,': sequence ',int2str(num),' has xType=',int2str(xType)]);

      end

      % 

      if sum(xType==[4,6])        % negative values are present          

         I=find(x);               % non-zero entries in x

         Sg=(sign(x(I))+1)/2;     % the signs will be needed later, 0/1

         x=abs(x);   

      end

      if sum(xType==[5,6])        % we take the logarithms of the values          

         I=find(x);               % non-zero entries in x

         xa=x;                    % additional bits

         x(I)=floor(log2(x(I)));

         xa(I)=xa(I)-2.^x(I);

         x(I)=x(I)+1;

      end

      %  now do the coding of this sequence

      PutS(xType,TypeS,TypeC);

      if (xType==1)       % one symbol and x=x(1)>1

         PutVLIC(x-2);

      elseif (xType==2)   % L>1 but only one symbol, x(1)=x(2)=...=x(L)>1

         PutVLIC(L-2);

         PutVLIC(x(1)-2);

      elseif sum(xType==[3,4,5,6])  % now 'normalized' sequences: 0 <= x(i) <= 1000

         PutVLIC(L-2);     

         M=max(x);

         PutN(M,1000);         % some bits for M

         % initialize model

         T=[ones(M+2,1);0];

         Tu=flipud((-1:(M+1))');   % (-1) since ESC never is used in Tu context

         % and code the symbols in the sequence x

         for l=1:L

            sc=T(1);

            m=x(l); 

            hc=T(m+1);lc=T(m+2);

            if hc==lc      % unused symbol, code ESC symbol first

               hc=T(M+2);lc=T(M+3);

               EncodeSymbol;      % code escape with T table

               sc=Tu(1);hc=Tu(m+1);lc=Tu(m+2);  % symbol with Tu table

               Tu(1:(m+1))=Tu(1:(m+1))-1;       % update Tu table

            end

            EncodeSymbol;  % code actual symbol with T table (or Tu table)

            % update T table, MUST be identical in Encode and Decode

            % this avoid very large values  in T even if sequence is very long

            T(1:(m+1))=T(1:(m+1))+1; 

            if (rem(l,5000)==0)   % l here is letter l (small L)

               dT=T(1:(M+2))-T(2:(M+3));

               dT=floor(dT*7/8+1/8);

               for m=(M+2):(-1):1; T(m)=T(m+1)+dT(m); end;

            end

         end          % for l=1:L

         % this end the "elseif sum(xType==[3,4,5,6])"-clause

      elseif (xType==7)   % L>1 and   0 <= x(i) <= 1

         PutVLIC(L-2);

         EncodeBin(x,L);    % code this sequence a special way

      elseif (xType==8)   % L>1 and   0 <= x(1)=x(2)=...=x(L) <= 1

         PutVLIC(L-2);

         PutABit(x(1));

      elseif (xType==9)   % L=1 and   0 <= x(1) <= 1

         PutABit(x(1));

      elseif (xType==10)       % L>1 and  x(1)=x(2)=...=x(L) <= -1

         PutVLIC(L-2);

         PutVLIC(-1-x(1));

      elseif (xType==11)       % L=1 and   x(1) <= -1

         PutVLIC(-1-x);

      end         % if (xType==1)   

      % additional information should be coded as well

      if 0         % first the way it is not done any more

         if sum(xType==[4,6])           % sign must be stored          

            for i=1:length(Sg); PutABit(Sg(i)); end;   

         end

         if sum(xType==[5,6])        % additional bits must be stored          

            for i=1:L

               for ii=(x(i)-1):(-1):1

                  PutABit(bitget(xa(i),ii));

               end

            end

         end

      else         % this is how we do it

         if sum(xType==[4,6])           % sign must be stored          

            EncodeBin(Sg,length(I));    % since length(I)=length(Sg)

         end

         if sum(xType==[5,6])        % additional bits must be stored          

            b=zeros(sum(x)-length(I),1);  % number of additional bits

            bi=0;

            for i=1:L

               for ii=(x(i)-1):(-1):1

                  bi=bi+1;

                  b(bi)=bitget(xa(i),ii);

               end

            end

            if (bi~=(sum(x)-length(I)))

               error([Mfile,': logical error, bi~=(sum(x)-length(I)).']); 

            end

            EncodeBin(b,bi);    % since bi=(sum(x)-length(I))

         end

      end

      %

      EndPos=Byte*8-BitPos+ub;    % used for counting bits

      bits=EndPos-StartPos;

      Res(num,1)=L;

      Res(num,2)=0;

      Res(num,3)=bits;

      if L>0; Res(num,4)=bits/L; else Res(num,4)=bits; end;

      if Display

         disp([Mfile,': Sequence ',int2str(num),' of ',int2str(L),' symbols ',...

               'encoded using ',int2str(bits),' bits.']);

      end

   end         % for num=1:NumOfX

   % flush the arithmetic coder'

   PutBit(bitget(low,K-1));     

   ub=ub+1;

   while ub>0

      PutBit(~bitget(low,K-1));

      ub=ub-1;

   end

   % flush is finished

   y=y(1:Byte);   

   varargout(1) = {y};

   if (nargout >= 2) 

      % now calculate results for the total

      Res(NumOfX+1,1)=Ltot;

      Res(NumOfX+1,2)=0;

      Res(NumOfX+1,3)=Byte*8;

      if (Ltot>0); Res(NumOfX+1,4)=Byte*8/Ltot; else Res(NumOfX+1,4)=Byte*8; end;

      varargout(2) = {Res}; 

   end

end         % if Encode


if Decode

   for k=1:K

      code=code*2;

      code=code+GetBit;   % read bits into code

   end

   NumOfX=GetVLIC;   % first read number of sequences

   xC=cell(NumOfX,1);

   for num=1:NumOfX

      % find what kind of sequenqe we have, xType, stored first in sequence

      xType=GetS(TypeS,TypeC);

      % now decode the different kind of sequences, each the way it was stored 

      if (xType==0)       % empty sequence, no more symbols coded

         x=[];

      elseif (xType==1)       % one symbol and x=x(1)>1

         x=GetVLIC+2;

      elseif (xType==2)   % L>1 but only one symbol, x(1)=x(2)=...=x(L)>1

         L=GetVLIC+2;

         x=ones(L,1)*(GetVLIC+2);

      elseif sum(xType==[3,4,5,6])  % now 'normalized' sequences: 0 <= x(i) <= 1000

         L=GetVLIC+2;

         x=zeros(L,1);

         M=GetN(1000);      % M is max(x)

         % initialize model

         T=[ones(M+2,1);0];

         Tu=flipud((-1:(M+1))');   % (-1) since ESC never is used in Tu context

         % and decode the symbols in the sequence x

         for l=1:L

            sc=T(1);

            range=high-low+1;

            count=floor(( (code-low+1)*sc-1 )/range);

            m=2; while (T(m)>count); m=m+1; end; 

            hc=T(m-1);lc=T(m);m=m-2;

            RemoveSymbol;

            if (m>M)     % decoded ESC symbol, find symbol from Tu table

               sc=Tu(1);range=high-low+1;

               count=floor(( (code-low+1)*sc-1 )/range);

               m=2; while (Tu(m)>count); m=m+1; end; 

               hc=Tu(m-1);lc=Tu(m);m=m-2;

               RemoveSymbol;

               Tu(1:(m+1))=Tu(1:(m+1))-1;   % update Tu table

            end

            x(l)=m;

            % update T table, MUST be identical in Encode and Decode

            % this avoid very large values  in T even if sequence is very long

            T(1:(m+1))=T(1:(m+1))+1; 

            if (rem(l,5000)==0)  

               dT=T(1:(M+2))-T(2:(M+3));

               dT=floor(dT*7/8+1/8);

               for m=(M+2):(-1):1; T(m)=T(m+1)+dT(m); end;

            end

         end          % for l=1:L

         % this end the "elseif sum(xType==[3,4,5,6])"-clause

      elseif (xType==7)   % L>1 and   0 <= x(i) <= 1

         L=GetVLIC+2;

         x=DecodeBin(L);    % decode this sequence a special way

      elseif (xType==8)   % L>1 and   0 <= x(1)=x(2)=...=x(L) <= 1

         L=GetVLIC+2;

         x=ones(L,1)*GetABit;

      elseif (xType==9)   % L=1 and   0 <= x(1) <= 1

         x=GetABit;

      elseif (xType==10)       % L>1 and  x(1)=x(2)=...=x(L) <= -1

         L=GetVLIC+2;

         x=ones(L,1)*(-1-GetVLIC);

      elseif (xType==11)       % L=1 and   x(1) <= -1

         x=(-1-GetVLIC);

      end         % if (xType==0)   

      % additional information should be decoded as well

      L=length(x);

      I=find(x);

      if 0

         if sum(xType==[4,6])           % sign must be retrieved          

            Sg=zeros(size(I));

            for i=1:length(I); Sg(i)=GetABit; end;   % and the signs   (0/1)

            Sg=Sg*2-1;                               % (-1/1)

         end

         if sum(xType==[5,6])        % additional bits must be retrieved

            xa=zeros(L,1);

            for i=1:L

               for ii=2:x(i)

                  xa(i)=2*xa(i)+GetABit;

               end

            end

            x(I)=2.^(x(I)-1);

            x=x+xa;

         end

      else

         if sum(xType==[4,6])           % sign must be retrieved          

            Sg=DecodeBin(length(I));    % since length(I)=length(Sg)

            Sg=Sg*2-1;                  % (-1/1)

         end

         if sum(xType==[5,6])        % additional bits must be retrieved

            bi=sum(x)-length(I);     % number of additional bits

            b=DecodeBin(bi);  

            bi=0;

            xa=zeros(L,1);

            for i=1:L

               for ii=2:x(i)

                  bi=bi+1;

                  xa(i)=2*xa(i)+b(bi);

               end

            end

            x(I)=2.^(x(I)-1);

            x=x+xa;

         end

      end

      if sum(xType==[4,6])           % sign must be used          

         x(I)=x(I).*Sg;

      end

      % now x is the retrieved sequence      

      xC{num}=x;

   end         % for num=1:NumOfX

   varargout(1) = {xC}; 

end


return     % end of main function, Arith07

%----------------------------------------------------------------------

%----------------------------------------------------------------------


% --- The functions for binary sequences: EncodeBin and DecodeBin -------

% These function may call themselves recursively

function EncodeBin(x,L)

global y Byte BitPos

global high low range ub hc lc sc K code


Display=0;

x=x(:);

if (length(x)~=L); error('EncodeBin: length(x) not equal L.'); end;


% first we try some different coding methods to find out which one

% that might do best. Many more methods could have been tried, for

% example methods to check if x is a 'byte' sequence, or if the bits

% are grouped in other ways. The calling application is the best place

% to detect such dependencies, since it will (might) know the process and

% possible also its statistical (or deterministic) properties.

% Here we just check some few coding methods: direct, split, diff, diff+split

% The main variables used for the different methods are:

%  direct: x, I, J, L11, b0

%  split: x is split into x1 and x2, L1, L2, b1 is bits needed

%  diff: x3 is generated from x, I3, J3 L31, b2

%  diff+split: x3 is split into x4 and x5, L4, L5, b3

%

MetS=[0,1,2,3];       % the different methods, direct, split, diff, diff+split

MetC=[9,3,3,1];       % and the counts (which gives the probabilities)

% first set how many bits needed to code the method

b0=log2(sum(MetC))-log2(MetC(1));  

b1=log2(sum(MetC))-log2(MetC(2));  

b2=log2(sum(MetC))-log2(MetC(3));  

b3=log2(sum(MetC))-log2(MetC(4));  


I=find(x(1:(L-1))==1);      % except last element in x

J=find(x(1:(L-1))==0);

L11=length(I);   

% perhaps is 'entropy' interesting

% N1=L11+x(L);

% N0=L-N1;

% b=N1*log2(L/N1)+N0*log2(L/N0);

% disp(['L=',int2str(L),',  N1=',int2str(N1),',  (e)bits=',num2str(b)]);

b0=b0+BitEst(L,L11+x(L));   % bits needed for the sequence without splitting

if Display

   disp(['EncodeBin: x of length ',int2str(L),' and ',int2str(L11+x(L)),...

         ' ones (p=',num2str((L11+x(L))/L,'%1.3f'),...

         ') can be coded by ',num2str(b0,'%6.0f'),' bits.']);

end

% diff with a binary sequence is to indicate wether or not a symbol is

% the same as preceeding symbol or not, x(0) is assumed to be '0' (zero).

% This is the DPCM coding scheme on a binary sequence

x3=abs(x-[0;x(1:(L-1))]);

I3=find(x3(1:(L-1))==1);      % except last element in x3

J3=find(x3(1:(L-1))==0);

L31=length(I3);   

b2=b2+BitEst(L,L31+x3(L));  % bits needed for the sequence without splitting

if Display

   disp(['EncodeBin: diff x, L=',int2str(L),' gives ',int2str(L31+x3(L)),...

         ' ones (p=',num2str((L31+x3(L))/L,'%1.3f'),...

         ') can be coded by ',num2str(b2,'%6.0f'),' bits.']);

end

%

if (L>40)   

   % only now we try to split the sequences x and x3

   if (L11>3) & ((L-L11)>3) 

      % try to split x into x1 and x2, depending on previous symbol

      if L11<(L/2)

         x1=x(I+1);

         x2=[x(1);x(J+1)];

         L1=L11;L2=L-L11;

      else

         x1=[x(1);x(I+1)];

         x2=x(J+1);

         L1=L11+1;L2=L-L11-1;

      end

      b11=BitEst(L1,length(find(x1)));  % bits needed for x1

      b12=BitEst(L2,length(find(x2)));  % bits needed for x2

      % b1 is bits to code: Method, L11, x1 and x2

      b1=b1+log2(L)+b11+b12;  

      if Display

         disp(['EncodeBin, x -> x1+x2:      lengths are ',int2str(L1),'+',int2str(L2),...

               '  bits are ',num2str(b11,'%6.0f'),'+',num2str(b12,'%6.0f'),...

               '.  Total is ',num2str(b1,'%6.0f'),' bits.']);

      end

   else

      b1=b0+1;      % just to make this larger

   end

   if (L31>3) & ((L-L31)>3) 

      % try to split x3 into x4 and x5, depending on previous symbol

      if L31<(L/2)

         x4=x3(I3+1);

         x5=[x3(1);x3(J3+1)];

         L4=L31;L5=L-L31;

      else

         x4=[x3(1);x3(I3+1)];

         x5=x3(J3+1);

         L4=L31+1;L5=L-L31-1;

      end

      b31=BitEst(L4,length(find(x4)));  % bits needed for x4

      b32=BitEst(L5,length(find(x5)));  % bits needed for x5

      % b3 is bits to code: Method, L31, x4 and x5

      b3=b3+log2(L)+b31+b32;  

      if Display

         disp(['EncodeBin, diff x -> x4+x5: lengths are ',int2str(L4),'+',int2str(L5),...

               '  bits are ',num2str(b31,'%6.0f'),'+',num2str(b32,'%6.0f'),...

               '.  Total is ',num2str(b3,'%6.0f'),' bits.']);

      end

   else

      b3=b2+1;      % just to make this larger

   end

else

   b1=b0+1;      % just to make this larger

   b3=b2+1;      % just to make this larger

end

% now code x by the best method of those investigated

[b,MetI]=min([b0,b1,b2,b3]);

MetI=MetI-1;

PutS(MetI,MetS,MetC);   % code which method to use

%

if MetI==0

   % code the sequence x

   N1=L11+x(L);

   N0=L-N1;

   PutN(N1,L);            % code N1, 0<=N1<=L

   for n=1:L

      if ~(N0*N1); break; end;

      PutS(x(n),[0,1],[N0,N1]);   % code x(n)

      N0=N0-1+x(n);N1=N1-x(n);    % update model (of rest of the sequence)

   end

elseif MetI==1

   % code x1 and x2

   clear x4 x5 x3 x I3 J3 I J

   PutN(L11,L-1);         % 0<=L11<=(L-1) 

   EncodeBin(x1,L1);

   EncodeBin(x2,L2);

elseif MetI==2

   % code the sequence x3

   N1=L31+x3(L);

   N0=L-N1;

   PutN(N1,L);            % code N1, 0<=N1<=L

   for n=1:L

      if ~(N0*N1); break; end;

      PutS(x3(n),[0,1],[N0,N1]);   % code x3(n)

      N0=N0-1+x3(n);N1=N1-x3(n);    % update model (of rest of the sequence)

   end

elseif MetI==3

   % code x4 and x5

   clear x1 x2 x3 x I3 J3 I J

   PutN(L31,L-1);         % 0<=L31<=(L-1) 

   EncodeBin(x4,L4);

   EncodeBin(x5,L5);

end

return    % end of EncodeBin


function x = DecodeBin(L)

global y Byte BitPos

global high low range ub hc lc sc K code


% these must be as in EncodeBin

MetS=[0,1,2,3];       % the different methods, direct, split, diff, diff+split

MetC=[9,3,3,1];       % and the counts (which gives the probabilities)

MetI=GetS(MetS,MetC);    % encode which method to use


if (MetI==1) | (MetI==3)   % a split was done

   L11=GetN(L-1);         % 0<=L11<=(L-1) 

   if L11<(L/2)

      L1=L11;L2=L-L11;

   else

      L1=L11+1;L2=L-L11-1;

   end

   x1=DecodeBin(L1);

   x2=DecodeBin(L2);

   % build sequence x from x1 and x2

   x=zeros(L,1);

   if L11<(L/2)

      x(1)=x2(1);

      n1=0;n2=1;   % index for the last in x1 and x2

   else

      x(1)=x1(1);

      n1=1;n2=0;   % index for the last in x1 and x2

   end

   for n=2:L

      if (x(n-1))

         n1=n1+1;

         x(n)=x1(n1);

      else

         n2=n2+1;

         x(n)=x2(n2);

      end

   end

else                      % no split

   N1=GetN(L);

   N0=L-N1;

   x=zeros(L,1);

   for n=1:L

      if (N0==0); x(n:L)=1; break; end;

      if (N1==0); break; end;

      x(n)=GetS([0,1],[N0,N1]);   % decode x(n)

      N0=N0-1+x(n);N1=N1-x(n);    % update model (of rest of the sequence)

   end

end


if (MetI==2) | (MetI==3)   % x is diff coded

   for n=2:L

      x(n)=x(n-1)+x(n);

   end

   x=rem(x,2);

end


return    % end of DecodeBin



% ------- Other subroutines ------------------------------------------------


% Functions to write and read a Variable Length Integer Code word

% This is a way of coding non-negative integers that uses fewer 

% bits for small integers than for large ones. The scheme is:

%   '00'   +  4 bit  - integers from 0 to 15

%   '01'   +  8 bit  - integers from 16 to 271

%   '10'   + 12 bit  - integers from 272 to 4367

%   '110'  + 16 bit  - integers from 4368 to 69903

%   '1110' + 20 bit  - integers from 69940 to 1118479

%   '1111' + 24 bit  - integers from 1118480 to 17895695

%   not supported  - integers >= 17895696 (=2^4+2^8+2^12+2^16+2^20+2^24)

function PutVLIC(N)

global y Byte BitPos

global high low range ub hc lc sc K code

if (N<0)

   error('Arith07-PutVLIC: Number is negative.'); 

elseif (N<16)

   PutABit(0);PutABit(0);

   for (i=4:-1:1); PutABit(bitget(N,i)); end;

elseif (N<272)

   PutABit(0);PutABit(1);

   N=N-16;

   for (i=8:-1:1); PutABit(bitget(N,i)); end;

elseif (N<4368)

   PutABit(1);PutABit(0);

   N=N-272;

   for (i=12:-1:1); PutABit(bitget(N,i)); end;

elseif (N<69940)

   PutABit(1);PutABit(1);PutABit(0);

   N=N-4368;

   for (i=16:-1:1); PutABit(bitget(N,i)); end;

elseif (N<1118480)

   PutABit(1);PutABit(1);PutABit(1);PutABit(0);

   N=N-69940;

   for (i=20:-1:1); PutABit(bitget(N,i)); end;

elseif (N<17895696)

   PutABit(1);PutABit(1);PutABit(1);PutABit(1);

   N=N-1118480;

   for (i=24:-1:1); PutABit(bitget(N,i)); end;

else

   error('Arith07-PutVLIC: Number is too large.'); 

end

return


function N=GetVLIC

global y Byte BitPos

global high low range ub hc lc sc K code

N=0;

if GetABit

   if GetABit

      if GetABit

         if GetABit

            for (i=1:24); N=N*2+GetABit; end;

            N=N+1118480;

         else

            for (i=1:20); N=N*2+GetABit; end;

            N=N+69940;

         end

      else

         for (i=1:16); N=N*2+GetABit; end;

         N=N+4368;

      end

   else

      for (i=1:12); N=N*2+GetABit; end;

      N=N+272;

   end

else

   if GetABit

      for (i=1:8); N=N*2+GetABit; end;

      N=N+16;

   else

      for (i=1:4); N=N*2+GetABit; end;

   end

end

return


% Aritmetic coding of a number or symbol x, the different symbols (numbers)

% are given in the array S, and the counts (which gives the probabilities)

% are given in C, an array of same length as S.

% x must be a number in S.

% example with symbols 0 and 1, where probabilites are P{0}=0.8, P{1}=0.2

% PutS(x,[0,1],[4,1]) and x=GetS([0,1],[4,1])

% An idea: perhaps the array S should be only in the calling function, and

% that it do not need to be passed as an argument at all.

% Hint: it may be best to to the most likely symbols (highest counts) in

% the beginning of the tables S and C.

function PutS(x,S,C)

global y Byte BitPos

global high low range ub hc lc sc K code

N=length(S);     % also length(C) 

m=find(S==x);    % m is a single value, index in S, 1 <= m <= N

sc=sum(C);

lc=sc-sum(C(1:m));

hc=lc+C(m);

% disp(['PutS: lc=',int2str(lc),' hc=',int2str(hc),' sc=',int2str(sc),' m=',int2str(m)]);

EncodeSymbol;  % code the bit

return


function x=GetS(S,C)

global y Byte BitPos

global high low range ub hc lc sc K code

range=high-low+1;

sc=sum(C);

count=floor(( (code-low+1)*sc-1 )/range);

m=1;

lc=sc-C(1);

while (lc>count); m=m+1; lc=lc-C(m); end; 

hc=lc+C(m);

x=S(m);

% disp(['GetS: lc=',int2str(lc),' hc=',int2str(hc),' sc=',int2str(sc),' m=',int2str(m)]);

RemoveSymbol;

return


% Aritmetic coding of a number x, 0<=x<=N, P{0}=P{1}=...=P{N}=1/(N+1)

function PutN(x,N)     % 0<=x<=N 

global y Byte BitPos

global high low range ub hc lc sc K code

sc=N+1;

lc=x;

hc=x+1;

EncodeSymbol;  % code the bit

return


function x=GetN(N)

global y Byte BitPos

global high low range ub hc lc sc K code

range=high-low+1;

sc=N+1;

x=floor(( (code-low+1)*sc-1 )/range);

hc=x+1;lc=x;

RemoveSymbol;

return


% Aritmetic coding of a bit, probability is 0.5 for both 1 and 0

function PutABit(Bit)

global y Byte BitPos

global high low range ub hc lc sc K code

sc=2;

if Bit 

   hc=1;lc=0; 

else 

   hc=2;lc=1; 

end

EncodeSymbol;  % code the bit

return

   

function Bit=GetABit

global y Byte BitPos

global high low range ub hc lc sc K code

range=high-low+1;

sc=2;

count=floor(( (code-low+1)*sc-1 )/range);

if (1>count)

   Bit=1;hc=1;lc=0;

else

   Bit=0;hc=2;lc=1;

end

RemoveSymbol;

return;


% The EncodeSymbol function encode a symbol, (correspond to encode_symbol page 149)

function EncodeSymbol

global y Byte BitPos 

global high low range ub hc lc sc K code

range=high-low+1;

high=low+floor(((range*hc)/sc)-1);

low=low+floor((range*lc)/sc);

while 1          % for loop on page 149

   if bitget(high,K)==bitget(low,K)

      PutBit(bitget(high,K));

      while ub > 0

         PutBit(~bitget(high,K));

         ub=ub-1;

      end

   elseif (bitget(low,K-1) & (~bitget(high,K-1)))

      ub=ub+1;

      low=bitset(low,K-1,0);

      high=bitset(high,K-1,1);

   else

      break

   end

   low=bitset(low*2,K+1,0);

   high=bitset(high*2+1,K+1,0);

end

return


% The RemoveSymbol function removes (and fill in new) bits from

% file, y, to code

function RemoveSymbol 

global y Byte BitPos 

global high low range ub hc lc sc K code

range=high-low+1;

high=low+floor(((range*hc)/sc)-1);

low=low+floor((range*lc)/sc);

while 1

   if bitget(high,K)==bitget(low,K)

      % do nothing (shift bits out)

   elseif (bitget(low,K-1) & (~bitget(high,K-1)))

      code=bitset(code,K-1,~bitget(code,K-1));     % switch bit K-1

      low=bitset(low,K-1,0);

      high=bitset(high,K-1,1);

   else

      break

   end

   low=bitset(low*2,K+1,0);

   high=bitset(high*2+1,K+1,0);

   code=bitset(code*2+GetBit,K+1,0);

end

if (low > high); error('low > high'); end;

return


% Functions to write and read a Bit

function PutBit(Bit)

global y Byte BitPos

BitPos=BitPos-1;

if (~BitPos); Byte=Byte+1; BitPos=8; end; 

y(Byte) = bitset(y(Byte),BitPos,Bit);

return

   

function Bit=GetBit

global y Byte BitPos

BitPos=BitPos-1;

if (~BitPos); Byte=Byte+1; BitPos=8; end; 

Bit=bitget(y(Byte),BitPos);

return

   

function b=BitEst(N,N1);

if (N1>(N/2)); N1=N-N1; end;

N0=N-N1;

if (N>1000)

   b=(N+3/2)*log2(N)-(N0+1/2)*log2(N0)-(N1+1/2)*log2(N1)-1.3256;

elseif (N1>20)

   b=(N+3/2)*log2(N)-(N0+1/2)*log2(N0)-(N1+1/2)*log2(N1)-0.020984*log2(log2(N))-1.25708;

else

   b=log2(N+1)+sum(log2(N-(0:(N1-1))))-sum(log2(N1-(0:(N1-1))));  

end

return

⛄ 运行结果

【RDH隐藏】基于减少直方图移位中像素的无效移位的可逆数据隐藏附matlab代码_数据

⛄ 参考文献

【RDH隐藏】基于减少直方图移位中像素的无效移位的可逆数据隐藏附matlab代码_数据_02

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料