✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
、
⛄ 内容介绍
近年来,随着可再生能源的发展,风力发电的并网容量不断增长。在很多国家和地区,风电已成为了电力供应的重要来源之一。然而,风力发电有着高度的随机性和波动性,将其大规模接入电网时,会给电网的安全运行带来挑战[1-2] 。为保证系统安全、稳定和经济运行,风电功率预测发挥着重要的作用,是使风电接入电力系统的最经济高效的措施之一[3] 。
然而,风力发电功率受多种不确定因素的影响,很难对其建立准确的预测模型。此类随机性能源接入电网时,预测误差对电力系统的实际运行带来了重要影响[4] 。例如,2013 年 4 月 3 日,德国 50Hertz输电公司预测光伏发电量约为20 GW,而实际接入的光伏发电量仅为11.5 GW,该预测误差造成了 8.8 GW 的电力缺口,超过了德国境内所有可用备用容量的总和,造成了整个德国电力系统无法独立维持平衡,而必须从邻国寻求电力支持[5] 。
⛄ 部分代码
%_________________________________________________________________________%
% 麻雀优化算法 %
%_________________________________________________________________________%
function [Best_pos,Best_score,curve]=SSA(pop,Max_iter,lb,ub,dim,fobj)
ST = 0.6;%预警值
PD = 0.7;%发现者的比列,剩下的是加入者
SD = 0.2;%意识到有危险麻雀的比重
PDNumber = round(pop*PD); %发现者数量
SDNumber = round(pop*SD);%意识到有危险麻雀数量
if(max(size(ub)) == 1)
ub = ub.*ones(1,dim);
lb = lb.*ones(1,dim);
end
%种群初始化
X0=initialization(pop,dim,ub,lb);
X = X0;
%计算初始适应度值
fitness = zeros(1,pop);
for i = 1:pop
fitness(i) = fobj(X(i,:));
end
[fitness, index]= sort(fitness);%排序
BestF = fitness(1);
WorstF = fitness(end);
GBestF = fitness(1);%全局最优适应度值
for i = 1:pop
X(i,:) = X0(index(i),:);
end
curve=zeros(1,Max_iter);
GBestX = X(1,:);%全局最优位置
X_new = X;
for i = 1: Max_iter
disp(['第',num2str(i),'次迭代']);
BestF = fitness(1);
WorstF = fitness(end);
R2 = rand(1);
for j = 1:PDNumber
if(R2<ST)
X_new(j,:) = X(j,:).*exp(-j/(rand(1)*Max_iter));
else
X_new(j,:) = X(j,:) + randn()*ones(1,dim);
end
end
for j = PDNumber+1:pop
% if(j>(pop/2))
if(j>(pop - PDNumber)/2 + PDNumber)
X_new(j,:)= randn().*exp((X(end,:) - X(j,:))/j^2);
else
%产生-1,1的随机数
A = ones(1,dim);
for a = 1:dim
if(rand()>0.5)
A(a) = -1;
end
end
AA = A'*inv(A*A');
X_new(j,:)= X(1,:) + abs(X(j,:) - X(1,:)).*AA';
end
end
Temp = randperm(pop);
SDchooseIndex = Temp(1:SDNumber);
for j = 1:SDNumber
if(fitness(SDchooseIndex(j))>BestF)
X_new(SDchooseIndex(j),:) = X(1,:) + randn().*abs(X(SDchooseIndex(j),:) - X(1,:));
elseif(fitness(SDchooseIndex(j))== BestF)
K = 2*rand() -1;
X_new(SDchooseIndex(j),:) = X(SDchooseIndex(j),:) + K.*(abs( X(SDchooseIndex(j),:) - X(end,:))./(fitness(SDchooseIndex(j)) - fitness(end) + 10^-8));
end
end
%边界控制
for j = 1:pop
for a = 1: dim
if(X_new(j,a)>ub)
X_new(j,a) =ub(a);
end
if(X_new(j,a)<lb)
X_new(j,a) =lb(a);
end
end
end
%更新位置
for j=1:pop
fitness_new(j) = fobj(X_new(j,:));
end
for j = 1:pop
if(fitness_new(j) < GBestF)
GBestF = fitness_new(j);
GBestX = X_new(j,:);
end
end
X = X_new;
fitness = fitness_new;
%排序更新
[fitness, index]= sort(fitness);%排序
BestF = fitness(1);
WorstF = fitness(end);
for j = 1:pop
X(j,:) = X(index(j),:);
end
curve(i) = GBestF;
end
Best_pos =GBestX;
Best_score = curve(end);
end
⛄ 运行结果
⛄ 参考文献
[1]朱海婷, 杨宁, 王博,等. 基于人工神经网络的风电功率预测优化算法[J]. 上海电力学院学报, 2014, 30(3):203-207.
[2]崔兴华, 靳晟, 姚芷馨,等. 基于麻雀搜索算法和广义回归神经网络的玉米产量预测[J]. 数学的实践与认识, 2022, 52(7):9.