1 内容介绍

针对多目标图像分割问题,采用了一种基于二维灰度直方图的三类阈值分别方法,将图像划分为暗、灰和亮三种不同的区域,分别给出了其模糊隶属度函数,引入概率分析,定义了基于指数熵算子的最大模糊熵准则,通过灰狼算法迭代搜索确定图像的分别阈值。实验结果表明,该算法能快速、有效的分割图像。

2 部分代码

%___________________________________________________________________%

%  Grey Wolf Optimizer (GWO) source codes version 1.0               %

%                                                                   %

%  Developed in MATLAB R2011b(7.13)                                 %

%                                                                   %

%  Author and programmer: Seyedali Mirjalili                        %

%                                                                   %

%         e-Mail: ali.mirjalili@gmail.com                           %

%                 seyedali.mirjalili@griffithuni.edu.au             %

%                                                                   %

%       Homepage: http://www.alimirjalili.com                       %

%                                                                   %

%   Main paper: S. Mirjalili, S. M. Mirjalili, A. Lewis             %

%               Grey Wolf Optimizer, Advances in Engineering        %

%               Software , in press,                                %

%               DOI: 10.1016/j.advengsoft.2013.12.007               %

%                                                                   %

%___________________________________________________________________%


% Grey Wolf Optimizer

function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)


% initialize alpha, beta, and delta_pos

Alpha_pos=zeros(1,dim);

Alpha_score=inf; %change this to -inf for maximization problems


Beta_pos=zeros(1,dim);

Beta_score=inf; %change this to -inf for maximization problems


Delta_pos=zeros(1,dim);

Delta_score=inf; %change this to -inf for maximization problems


%Initialize the positions of search agents

Positions=initialization(SearchAgents_no,dim,ub,lb);


Convergence_curve=zeros(1,Max_iter);


l=0;% Loop counter


% Main loop

while l<Max_iter

    for i=1:size(Positions,1)  

        

       % Return back the search agents that go beyond the boundaries of the search space

        Flag4ub=Positions(i,:)>ub;

        Flag4lb=Positions(i,:)<lb;

        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;               

        

        % Calculate objective function for each search agent

        fitness=fobj(Positions(i,:));

        

        % Update Alpha, Beta, and Delta

        if fitness<Alpha_score 

            Alpha_score=fitness; % Update alpha

            Alpha_pos=Positions(i,:);

        end

        

        if fitness>Alpha_score && fitness<Beta_score 

            Beta_score=fitness; % Update beta

            Beta_pos=Positions(i,:);

        end

        

        if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score 

            Delta_score=fitness; % Update delta

            Delta_pos=Positions(i,:);

        end

    end

    

    

    a=2-l*((2)/Max_iter); % a decreases linearly fron 2 to 0

    

    % Update the Position of search agents including omegas

    for i=1:size(Positions,1)

        for j=1:size(Positions,2)     

                       

            r1=rand(); % r1 is a random number in [0,1]

            r2=rand(); % r2 is a random number in [0,1]

            

            A1=2*a*r1-a; % Equation (3.3)

            C1=2*r2; % Equation (3.4)

            

            D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1

            X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1

                       

            r1=rand();

            r2=rand();

            

            A2=2*a*r1-a; % Equation (3.3)

            C2=2*r2; % Equation (3.4)

            

            D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2

            X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2       

            

            r1=rand();

            r2=rand(); 

            

            A3=2*a*r1-a; % Equation (3.3)

            C3=2*r2; % Equation (3.4)

            

            D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3

            X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3             

            

            Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)

            

        end

    end

    l=l+1;    

    Convergence_curve(l)=Alpha_score;

end



3 运行结果

【图像分割-阈值分割】基于灰狼算法指数熵多阈值图像分割附matlab代码_优化算法

4 参考文献

[1]安海涛. 基于改进蚁群算法和指数熵算子的三类阈值图像分割[J]. 呼和浩特科技, 2012.

[2]张新明等. "双模狩猎的灰狼优化算法在多阈值图像分割中应用." 山西大学学报(自然科学版) 039.003(2016):378-385.

部分理论引用网络文献,若有侵权联系博主删除。