1 简介

基于非线性收敛因子改进的灰狼优化算法(GWO-S)进行8组标准测试函数的实验测试,结果表明

,GWO-S能在较短的时间寻优.

【智能优化算法】基于改进非线性收敛因子灰狼优化算法求解单目标优化问题附matlab代码_d3

【智能优化算法】基于改进非线性收敛因子灰狼优化算法求解单目标优化问题附matlab代码_matlab代码_02

【智能优化算法】基于改进非线性收敛因子灰狼优化算法求解单目标优化问题附matlab代码_优化算法_03

【智能优化算法】基于改进非线性收敛因子灰狼优化算法求解单目标优化问题附matlab代码_d3_04

【智能优化算法】基于改进非线性收敛因子灰狼优化算法求解单目标优化问题附matlab代码_matlab代码_05

2 部分代码

%___________________________________________________________________%


% Grey Wolf Optimizer

function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)


% initialize alpha, beta, and delta_pos

Alpha_pos=zeros(1,dim);

Alpha_score=inf; %change this to -inf for maximization problems


Beta_pos=zeros(1,dim);

Beta_score=inf; %change this to -inf for maximization problems


Delta_pos=zeros(1,dim);

Delta_score=inf; %change this to -inf for maximization problems


%Initialize the positions of search agents

Positions=initialization(SearchAgents_no,dim,ub,lb);


Convergence_curve=zeros(1,Max_iter);


l=0;% Loop counter


% Main loop

while l<Max_iter

    for i=1:size(Positions,1)  


       % Return back the search agents that go beyond the boundaries of the search space

        Flag4ub=Positions(i,:)>ub;

        Flag4lb=Positions(i,:)<lb;

        Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;               


        % Calculate objective function for each search agent

        fitness=fobj(Positions(i,:));


        % Update Alpha, Beta, and Delta

        if fitness<Alpha_score 

            Alpha_score=fitness; % Update alpha

            Alpha_pos=Positions(i,:);

        end


        if fitness>Alpha_score && fitness<Beta_score 

            Beta_score=fitness; % Update beta

            Beta_pos=Positions(i,:);

        end


        if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score 

            Delta_score=fitness; % Update delta

            Delta_pos=Positions(i,:);

        end

    end



    % a decreases linearly fron 2 to 0

     a=sin(((l*pi)/Max_iter)+pi/2)+1;

    % Update the Position of search agents including omegas

    for i=1:size(Positions,1)

        for j=1:size(Positions,2)     


            r1=rand(); % r1 is a random number in [0,1]

            r2=rand(); % r2 is a random number in [0,1]


            A1=2*a*r1-a; % Equation (3.3)

            C1=2*r2; % Equation (3.4)


            D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1

            X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1


            r1=rand();

            r2=rand();


            A2=2*a*r1-a; % Equation (3.3)

            C2=2*r2; % Equation (3.4)


            D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2

            X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2       


            r1=rand();

            r2=rand(); 


            A3=2*a*r1-a; % Equation (3.3)

            C3=2*r2; % Equation (3.4)


            D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3

            X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3             


            Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)


        end

    end

    l=l+1;    

    Convergence_curve(l)=Alpha_score;

end



3 仿真结果

【智能优化算法】基于改进非线性收敛因子灰狼优化算法求解单目标优化问题附matlab代码_d3_06

【智能优化算法】基于改进非线性收敛因子灰狼优化算法求解单目标优化问题附matlab代码_matlab代码_07


4 参考文献

[1]王正通, 尤文, 李双. 改进非线性收敛因子灰狼优化算法[J]. 长春工业大学学报:自然科学版, 2020, 41(2):6.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


【智能优化算法】基于改进非线性收敛因子灰狼优化算法求解单目标优化问题附matlab代码_优化算法_08