1 简介

PO 是由巴基斯坦国立计算机和新兴科学大学的 Qamar Askari 等人于 2020 年提出的一种受社会启发的新型全局优化算法,灵感来源于政治的多阶段过程。该算法通过将种群从逻辑上划分为政党和选区,赋予每个解双重角色,便于每个候选人更新政党领袖和选区获胜者的位置。

【优化求解】基于政治优化算法求解最优目标matlab代码_优化算法

2 部分代码

%%%%%%%%%%%%%%%%%%%%% Parliamentarism %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for a=1:areas

newAWinner = aWinners(a,:);

i = aWinnerInd(a);


toa = randi(areas);

while(toa == a)

toa = randi(areas);

end

toAWinner = aWinners(toa,:);

for j = 1:dim

distance = abs(toAWinner(1,j) - newAWinner(1,j));

newAWinner(1,j) a= toAWinner(1,j) + (2*rand()-1) * distance;

end

newAWFitness=fobj(newAWinner(1,:));


%Replace only if improves

if newAWFitness < fitness(i)

Positions(i,:) = newAWinner(1,:);

fitness(i) = newAWFitness;

aWinners(a,:) = newAWinner(1,:);

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3 仿真结果

【优化求解】基于政治优化算法求解最优目标matlab代码_参考文献_02

4 参考文献

【优化求解】基于政治优化算法求解最优目标matlab代码_参考文献_03