一、简介

1974年,法国工程师J.Morlet首先提出小波变换的概念,1986年著名数学家Y.Meyer偶然构造出一个真正的小波基,并与S.Mallat合作建立了构造小波基的多尺度分析之后,小波分析才开始蓬勃发展起来。小波分析的应用领域十分广泛,在数学方面,它已用于数值分析、构造快速数值方法、曲线曲面构造、微分方程求解、控制论等。在信号分析方面的滤波、去噪声、压缩、传递等。在图像处理方面的图像压缩、分类、识别与诊断,去噪声等。本章将着重阐述小波在图像中的应用分析。
1 小波变换原理
小波分析是一个比较难的分支,用户采用小波变换,可以实现图像压缩,振动信号的分解与重构等,因此在实际工程上应用较广泛。小波分析与Fourier变换相比,小波变换是空间域和频率域的局部变换,因而能有效地从信号中提取信息。小波变换通过伸缩和平移等基本运算,实现对信号的多尺度分解与重构,从而很大程度上解决了Fourier变换带来的很多难题。
小波分析作一个新的数学分支,它是泛函分析、Fourier分析、数值分析的完美结晶;小波分析也是一种“时间—尺度”分析和多分辨分析的新技术,它在信号分析、语音合成、图像压缩与识别、大气与海洋波分析等方面的研究,都有广泛的应用。
(1)小波分析用于信号与图像压缩。小波压缩的特点是压缩比高,压缩速度快,压缩后能保持信号与图像的特征不变,且在传递中能够抗干扰。基于小波分析的压缩方法很多,具体有小波压缩,小波包压缩,小波变换向量压缩等。
(2)小波也可以用于信号的滤波去噪、信号的时频分析、信噪分离与提取弱信号、求分形指数、信号的识别与诊断以及多尺度边缘检测等。
(3)小波分析在工程技术等方面的应用概括的包括计算机视觉、曲线设计、湍流、远程宇宙的研究与生物医学方面。
2 多尺度分析
【图像融合】基于小波变换的图像融合matlab源码_分享
3 图像的分解和量化
【图像融合】基于小波变换的图像融合matlab源码_分享_02
4 图像压缩编码
【图像融合】基于小波变换的图像融合matlab源码_分享_03
5 图像编码评价
【图像融合】基于小波变换的图像融合matlab源码_分享_04

二、源代码

clear
[imA,map1] = imread('A.tif');
M1 = double(imA) / 256;
[imB,map2] = imread('B.tif');
M2 = double(imB) / 256;
 
 
zt= 4; 
wtype = 'haar';
%    M1 - input image A
%    M2 - input image B
%    wtype使用的小波类型
%    Y  - fused image   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%%  小波变换图像融合
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%   小波变换的绝对值大的小波系数,对应着显著的亮度变化,也就是图像中的显著特征。所以,选择绝对值大
%%   的小波系数作为我们需要的小波系数。【注意,前面取的是绝对值大小,而不是实际数值大小】
%%
%%   低频部分系数采用二者求平均的方法
%%
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[c0,s0] = wavedec2(M1, zt, wtype);%多尺度二维小波分解
 
[c1,s1] = wavedec2(M2, zt, wtype);%多尺度二维小波分解
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%  后面就可以进行取大进行处理。然后进行重构,得到一个图像
%%  的小波系数,然后重构出总的图像效果。
%%  取绝对值大的小波系数,作为融合后的小波系数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
KK = size(c1);
Coef_Fusion = zeros(1,KK(2));
Temp = zeros(1,2);
Coef_Fusion(1:s1(1,1)) = (c0(1:s1(1,1))+c1(1:s1(1,1)))/2;  %低频系数的处理
                     %这儿,连高频系数一起处理了,但是后面处理高频系数的时候,会将结果覆盖,所以没有关系
 
   %处理高频系数
    MM1 = c0(s1(1,1)+1:KK(2));
    MM2 = c1(s1(1,1)+1:KK(2));
    mm = (abs(MM1)) > (abs(MM2));
  	Y  = (mm.*MM1) + ((~mm).*MM2);
    Coef_Fusion(s1(1,1)+1:KK(2)) = Y;
    %处理高频系数end

三、运行结果

【图像融合】基于小波变换的图像融合matlab源码_分享_05