%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % Multi-Objective Golden Eagle Optimizer (MOGEO) source codes version 1.0 % % Original paper: Abdolkarim Mohammadi-Balani, Mahmoud Dehghan Nayeri, % Adel Azar, Mohammadreza Taghizadeh-Yazdi, % Golden Eagle Optimizer: A nature-inspired % metaheuristic algorithm, Computers & Industrial Engineering. % To use this code in your own project % remove the line for 'GetFunctionDetails' function % and define the following parameters: % fun : function handle to the .m file containing the objective function % the .m file you define should accept 'x' as input and return % a column vector containing objective function values % nobj : number of objectives % nvars : number of decision/design variables % lb : lower bound of decision variables (must be of size 1 x nvars) % ub : upper bound of decision variables (must be of size 1 x nvars) % % MOGEO will return the following: % x : best solution found % fval : objective function value of the found solution %% Inputs FunctionNumber = 7; % 1-10 options.PopulationSize = 200; options.ArchiveSize = 100; options.MaxIterations = 1000; options.FunctionNumber = FunctionNumber; %% Run Multi-Objective Golden Eagle Optimizer [fun,nobj,nvars,lb,ub] = GetFunctionDetails (FunctionNumber); options.AttackPropensity = [0.5 , 2]; options.CruisePropensity = [1 , 0.5]; [x,fval] = MOGEO (fun,nobj,nvars,lb,ub, options);