扑克牌 概率dp_dp
题意:
从54张牌中抽牌,问抽到a张红,b张黑,c张方,d张梅的概率,当抽取到大王和小王的时候,会固定抽期望步数最少的牌。求最小的期望步数。
思路:期望dp ,dp(a,b,c,d,e,f),a,b,c,d,代表前4种牌的数量,e,f代表大王和小王的状态,要注意判断不合法的情况,即所有牌都抽完了,还是没有得到想要的局面。然后我做的时候理解错题意了,把题意理解炒成期望步数了,其实抽到小王大王的时候选择是固定的,而没有四个分支。

#include<bits/stdc++.h>
using namespace std;
const double inf=1e20;
double dp[16][16][16][16][5][5];
// 54张牌:13张方块 13张梅花 13张 黑桃 13张红桃 1张大王 一张小王
int A,B,C,D; 
double dfs(int a,int b,int c,int d,int sk,int bk)
{
	if(dp[a][b][c][d][sk][bk]>=0)	return dp[a][b][c][d][sk][bk];
	int aa=a+(sk==0)+(bk==0);
	int bb=b+(sk==1)+(bk==1);
	int cc=c+(sk==2)+(bk==2);
	int dd=d+(sk==3)+(bk==3);
	if(aa>=A && bb>=B && cc>=C && dd>=D)	return dp[a][b][c][d][sk][bk]=0;
	if((a+b+c+d+(sk!=4)+(bk!=4))==54)	return dp[a][b][c][d][sk][bk]=inf;
	
	int al=54-(a+b+c+d+(sk!=4)+(bk!=4));
	double res=0;
	if(a+1<=13)
	res+=((13-a)*1.0/al *(1+dfs(a+1,b,c,d,sk,bk)));
	if(b+1<=13)
	res+=((13-b)*1.0/al*(1+dfs(a,b+1,c,d,sk,bk)));
	if(c+1<=13)
	res+=((13-c)*1.0/al*(1+dfs(a,b,c+1,d,sk,bk)));
	if(d+1<=13)
	res+=((13-d)*1.0/al*(1+dfs(a,b,c,d+1,sk,bk)));
	if(sk==4)
	{
	 double tt=inf;
	for(int i=0;i<=3;i++)
	tt=min(tt,dfs(a,b,c,d,i,bk));
	res+=1.0/al*(1+tt);
	}
	if(bk==4)
	{
	 double tt=inf;
	for(int i=0;i<=3;i++)
	tt=min(tt,dfs(a,b,c,d,sk,i));	  
	res+=1.0/al*(1+tt);
	}
	return dp[a][b][c][d][sk][bk]=res;
 } 
int main()
{
	int a,b,c,d;
	cin>>a>>b>>c>>d;
	A=a,B=b,C=c,D=d;
	memset(dp,-1,sizeof dp);
	double tt=dfs(0,0,0,0,4,4);
	if(tt>inf/2)	cout<<"-1.000"<<endl;
	else
	printf("%.3lf\n",tt);
}