业务数据保存在mysql中,定期用Sqoop导入到HDFS的ODS层,DWD层的业务数据进行简单的数据清洗并降维(退化维度)
需求1:求GMV成交总额
- 思路:在ADS层建
每日
GMV总和表ads_gmv_sum_day
drop table if exists ads_gmv_sum_day;
create table ads_gmv_sum_day(
`dt` string COMMENT '统计日期',
`gmv_count` bigint COMMENT '当日gmv订单个数',
`gmv_amount` decimal(16,2) COMMENT '当日gmv订单总金额',
`gmv_payment` decimal(16,2) COMMENT '当日支付金额'
) COMMENT '每日活跃用户数量'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_gmv_sum_day/';
- 从用户行为宽表导入数据到每日GMV表
insert into table ads_gmv_sum_day
select
'2019-02-10' dt ,
sum(order_count) gmv_count ,
sum(order_amount) gmv_amount ,
sum(payment_amount) payment_amount
from dws_user_action
where dt ='2019-02-10'
group by dt;
需求2:转化率
在统计分析指标中,经常会提及转化率,但实际上转化率的定义,各个行业各个公司有各自的口径。具体的转化率是什么,取决于你的转化目标。
最常见的口径:指实际下单的用户在单日总活跃用户中的比例。即单日消费用户数/单日日活数量。其他比如:
新访问用户转化率=单日新访问设备数/日活数新注册用户转化率=单日新注册用户数/日活数新付费用户转化率=单日新付费用户数/日活数
ADS层之新增用户占日活跃用户比率
- 建表
ads_user_convert_day
drop table if exists ads_user_convert_day;
create table ads_user_convert_day(
`dt` string COMMENT '统计日期',
`uv_m_count` bigint COMMENT '当日活跃设备',
`new_m_count` bigint COMMENT '当日新增设备',
`new_m_ratio` decimal(10,2) COMMENT '当日新增占日活的比率'
) COMMENT '每日活跃用户数量'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_user_convert_day/';
- 数据导入
insert into table ads_user_convert_day
select
'2019-02-10',
sum(uc.dc) sum_dc,
sum(uc.nmc) sum_nmc,
cast(sum(uc.nmc)/sum(uc.dc)*100 as decimal(10,2)) new_m_ratio
from(
select
day_count dc,
0 nmc
from ads_uv_count
where dt='2019-02-10'
union all
select
0 dc,
new_mid_count nmc
from ads_new_mid_count
where create_date='2019-02-10'
) uc;
需求3:ADS层之用户行为漏斗分析

- 建表
ads_user_action_convert_day
drop table if exists ads_user_action_convert_day;
create table ads_user_action_convert_day(
`dt` string COMMENT '统计日期',
`total_visitor_m_count` bigint COMMENT '总访问人数',
`order_u_count` bigint COMMENT '下单人数',
`visitor2order_convert_ratio` decimal(10,2) COMMENT '访问到下单转化率',
`payment_u_count` bigint COMMENT '支付人数',
`order2payment_convert_ratio` decimal(10,2) COMMENT '下单到支付的转化率'
) COMMENT '每日用户行为转化率统计'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_user_convert_day/' ;
- 数据导入
insert into table ads_user_action_convert_day
select
'2019-02-10',
uv.day_count,
ua.order_count,
cast(ua.order_count/uv.day_count*100 as decimal(10,2)) visitor2order_convert_ratio,
ua.payment_count,
cast(ua.payment_count/ua.order_count*100 as decimal(10,2)) order2payment_convert_ratio
from
(
select
sum(if(order_count>0,1,0)) order_count,
sum(if(payment_count>0,1,0)) payment_count
from dws_user_action
where dt='2019-02-10'
)ua, ads_uv_count uv
where uv.dt='2019-02-10' ;
需求4:品牌复购率
-
具体要求实现:以月为单位统计,购买两次以上商品的用户
品牌复购率实现 - 创建DWS层用户购买商品明细表(宽表)
drop table if exists dws_sale_detail_daycount;
create external table dws_sale_detail_daycount
( user_id string comment '用户 id',
sku_id string comment '商品 Id',
user_gender string comment '用户性别',
user_age string comment '用户年龄',
user_level string comment '用户等级',
order_price decimal(10,2) comment '订单价格',
sku_name string comment '商品名称',
sku_tm_id string comment '品牌id',
sku_category3_id string comment '商品三级品类id',
sku_category2_id string comment '商品二级品类id',
sku_category1_id string comment '商品一级品类id',
sku_category3_name string comment '商品三级品类名称',
sku_category2_name string comment '商品二级品类名称',
sku_category1_name string comment '商品一级品类名称',
spu_id string comment '商品 spu',
sku_num int comment '购买个数',
order_count string comment '当日下单单数',
order_amount string comment '当日下单金额'
) COMMENT '用户购买商品明细表'
PARTITIONED BY ( `dt` string)
stored as parquet
location '/warehouse/gmall/dws/dws_user_sale_detail_daycount/'
tblproperties ("parquet.compression"="snappy");
- 导入数据
with
tmp_detail as
(
select
user_id,
sku_id,
sum(sku_num) sku_num ,--当日某个用户下单某一个SKU商品总数量(个人注释)
count(*) order_count , --当日某个用户下单某一个SKU商品次数(个人注释)
sum(od.order_price*sku_num) order_amount --总金额
from ods_order_detail od
where od.dt='2019-02-10' and user_id is not null
group by user_id, sku_id
)
insert overwrite table dws_sale_detail_daycount partition(dt='2019-02-10')
select
tmp_detail.user_id,--用户id
tmp_detail.sku_id,--商品id
u.gender, --用户性别
months_between('2019-02-10', u.birthday)/12 age, --用户年龄
u.user_level,--用户等级
price,--商品价格
sku_name,--商品名字
tm_id,--品牌id
category3_id ,
category2_id ,
category1_id ,
category3_name ,
category2_name ,
category1_name ,
spu_id,
tmp_detail.sku_num,
tmp_detail.order_count,
tmp_detail.order_amount
from tmp_detail
left join dwd_user_info u on u.id=tmp_detail.user_id and u.dt='2019-02-10'
left join dwd_sku_info s on tmp_detail.sku_id =s.id and s.dt='2019-02-10';
- ADS层品牌复购率分析报表
- 品牌复购率分析报表建表语句
drop table ads_sale_tm_category1_stat_mn;
create table ads_sale_tm_category1_stat_mn
(
tm_id string comment '品牌id ' ,
category1_id string comment '1级品类id ',
category1_name string comment '1级品类名称 ',
buycount bigint comment '购买人数',
buy_twice_last bigint comment '两次以上购买人数',
buy_twice_last_ratio decimal(10,2) comment '单次复购率',
buy_3times_last bigint comment '三次以上购买人数',
buy_3times_last_ratio decimal(10,2) comment '多次复购率' ,
stat_mn string comment '统计月份',
stat_date string comment '统计日期'
) COMMENT '复购率统计'
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_sale_tm_category1_stat_mn/';
ADS层品牌复购率报表数据导入
insert into table ads_sale_tm_category1_stat_mn
select
mn.sku_tm_id,
mn.sku_category1_id,
mn.sku_category1_name,
sum(if(mn.order_count>=1,1,0)) buycount,
sum(if(mn.order_count>=2,1,0)) buyTwiceLast,
sum(if(mn.order_count>=2,1,0))/sum( if(mn.order_count>=1,1,0)) buyTwiceLastRatio,
sum(if(mn.order_count>3,1,0)) buy3timeLast ,
sum(if(mn.order_count>=3,1,0))/sum( if(mn.order_count>=1,1,0)) buy3timeLastRatio ,
date_format('2019-02-10' ,'yyyy-MM') stat_mn,
'2019-02-10' stat_date
from
(
select od.sku_tm_id,
od.sku_category1_id,
od.sku_category1_name,
user_id ,
sum(order_count) order_count
from dws_sale_detail_daycount od
where
date_format(dt,'yyyy-MM')<=date_format('2019-02-10' ,'yyyy-MM')
group by
od.sku_tm_id, od.sku_category1_id, user_id, od.sku_category1_name
) mn
group by mn.sku_tm_id, mn.sku_category1_id, mn.sku_category1_name;
- 最后将品牌复购率结果输出到MySQL
1.在MySQL中创建ads_sale_tm_category1_stat_mn表
create table ads_sale_tm_category1_stat_mn
(
tm_id varchar(200) comment '品牌id ' ,
category1_id varchar(200) comment '1级品类id ',
category1_name varchar(200) comment '1级品类名称 ',
buycount varchar(200) comment '购买人数',
buy_twice_last varchar(200) comment '两次以上购买人数',
buy_twice_last_ratio varchar(200) comment '单次复购率',
buy_3times_last varchar(200) comment '三次以上购买人数',
buy_3times_last_ratio varchar(200) comment '多次复购率' ,
stat_mn varchar(200) comment '统计月份',
stat_date varchar(200) comment '统计日期'
)
2.编写Sqoop导出脚本
#!/bin/bash
db_name=gmall
export_data() {
/opt/module/sqoop/bin/sqoop export \
--connect "jdbc:mysql://hadoop102:3306/${db_name}?useUnicode=true&characterEncoding=utf-8" \
--username root \
--password 000000 \
--table $1 \
--num-mappers 1 \
--export-dir /warehouse/$db_name/ads/$1 \
--input-fields-terminated-by "\t" \
--update-key "tm_id,category1_id,stat_mn,stat_date" \
--update-mode allowinsert \
#sqoop避免空值
--input-null-string '\\N' \
--input-null-non-string '\\N'
}
case $1 in
"ads_sale_tm_category1_stat_mn")
export_data "ads_sale_tm_category1_stat_mn"
;;
"all")
export_data "ads_sale_tm_category1_stat_mn"
;;
esac
关于导出update还是insert的问题
--update-mode
参数 :
updateonly 只更新,无法插入新数据
allowinsert 允许新增
--update-key
允许更新的情况下,指定哪些字段匹配视为同一条数据,进行更新而不增加。多个字段用逗号分隔。