from keras.callbacks import ReduceLROnPlateau

reduce_lr = ReduceLROnPlateau(monitor=‘val_loss’, factor=0.5, patience=2, verbose=1)


monitor:监测的值,可以是accuracy,val_loss,val_accuracy
factor:缩放学习率的值,学习率将以lr = lr*factor的形式被减少
patience:当patience个epoch过去而模型性能不提升时,学习率减少的动作会被触发
mode:‘auto’,‘min’,‘max’之一 默认‘auto’就行
epsilon:阈值,用来确定是否进入检测值的“平原区”
cooldown:学习率减少后,会经过cooldown个epoch才重新进行正常操作
min_lr:学习率最小值,能缩小到的下限
verbose: 详细信息模式,0 或者 1 。
 
Reduce=ReduceLROnPlateau(monitor='val_accuracy',
                         factor=0.1,
                         patience=2,
                         verbose=1,
                         mode='auto',
                         epsilon=0.0001,
                         cooldown=0,
                         min_lr=0)