上篇介绍了如何构建FP树,FP树的每条路径都满足最小支持度,我们需要做的是在一条路径上寻找到更多的关联关系。
抽取条件模式基
首先从FP树头指针表中的单个频繁元素项开始。对于每一个元素项,获得其对应的条件模式基(conditional pattern base),单个元素项的条件模式基也就是元素项的关键字。条件模式基是以所查找元素项为结尾的路径集合。每一条路径其实都是一条前辍路径(perfix path)。简而言之,一条前缀路径是介于所査找元素项与树根节点之间的所有内容。
下图是以{s:2}或{r:1}为元素项的前缀路径:
{s}的条件模式基,即前缀路径集合共有两个:{{z,x,y,t}, {x}};{r}的条件模式基共三个:{{z}, {z,x,y,t}, {x,s}}。
寻找条件模式基的过程实际上是从FP树的每个叶子节点回溯到根节点的过程。我们可以通过头指针列表headTable开始,通过指针的连接快速访问到所有根节点。下表是上图FP树的所有条件模式基:
创建条件FP树
为了发现更多的频繁项集,对于每一个频繁项,都要创建一棵条件FP树。可以使用刚才发现的条件模式基作为输入数据,并通过相同的建树代码来构建这些树。然后,递归地发现频繁项、发现条件模式基,以及发现另外的条件树。
以频繁项r为例,构建关于r的条件FP树。r的三个前缀路径分别是{z},{z,x,y,t},{x,s},设最小支持度minSupport=2,则y,t,s被过滤掉,剩下{z},{z,x},{x}。y,s,t虽然是条件模式基的一部分,但是并不属于条件FP树,即对于r来说,它们不是频繁的。如下图所示,y→t→r和s→r的全局支持度都为1,所以y,t,s对于r的条件树来说是不频繁的。
过滤后的r条件树如下:
重复上面步骤,r的条件模式基是{z,x},{x},已经没有能够满足最小支持度的路径, 所以r的条件树仅有一个。需要注意的是,虽然{z,x},{x}中共存在两个x,但{z,x}中,z是x的父节点,在构造条件FP树时不能直接将父节点移除,仅能从子节点开始逐级移除。
代码如下:
1 def ascendTree(leafNode, prefixPath):
2 if leafNode.parent != None:
3 prefixPath.append(leafNode.name)
4 ascendTree(leafNode.parent, prefixPath)
5
6 def findPrefixPath(basePat, headTable):
7 condPats = {}
8 treeNode = headTable[basePat][1]
9 while treeNode != None:
10 prefixPath = []
11 ascendTree(treeNode, prefixPath)
12 if len(prefixPath) > 1:
13 condPats[frozenset(prefixPath[1:])] = treeNode.count
14 treeNode = treeNode.nodeLink
15 return condPats
16
17 def mineTree(inTree, headerTable, minSup=1, preFix=set([]), freqItemList=[]):
18 # order by minSup asc, value asc
19 bigL = [v[0] for v in sorted(headerTable.items(), key=lambda p: (p[1][0],p[0]))]
20 for basePat in bigL:
21 newFreqSet = preFix.copy()
22 newFreqSet.add(basePat)
23 freqItemList.append(newFreqSet)
24 # 通过条件模式基找到的频繁项集
25 condPattBases = findPrefixPath(basePat, headerTable)
26 myCondTree, myHead = createTree(condPattBases, minSup)
27 if myHead != None:
28 print('condPattBases: ', basePat, condPattBases)
29 myCondTree.disp()
30 print('*' * 30)
31
32 mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList)
33
34 simpDat = loadSimpDat()
35 dictDat = createInitSet(simpDat)
36 myFPTree,myheader = createTree(dictDat, 3)
37 myFPTree.disp()
38 condPats = findPrefixPath('z', myheader)
39 print('z', condPats)
40 condPats = findPrefixPath('x', myheader)
41 print('x', condPats)
42 condPats = findPrefixPath('y', myheader)
43 print('y', condPats)
44 condPats = findPrefixPath('t', myheader)
45 print('t', condPats)
46 condPats = findPrefixPath('s', myheader)
47 print('s', condPats)
48 condPats = findPrefixPath('r', myheader)
49 print('r', condPats)
50
51 mineTree(myFPTree, myheader, 2)
控制台信息:
本例可以发现两个频繁项集{z,x}和{x}。
取得频繁项集后,可以根据置信度发现关联规则,这一步较为简单,可参考上篇的相关内容,不在赘述。
参考文献:《机器学习实战》
作者:我是8位的
本文以学习、研究和分享为主,如需转载,请联系本人,标明作者和出处,非商业用途!