吴恩达Coursera, 机器学习专项课程, Machine Learning:Supervised Machine Learning: Regression and Classification第一、二周所有jupyter notebook文件:

吴恩达Coursera, 机器学习专项课程, Machine Learning:Supervised Machine Learning: Regression and Classification第一、二周所有jupyter notebook文件(包括实验室练习文件)

本次作业

Exercise 1

# UNQ_C1
# GRADED FUNCTION: compute_cost

def compute_cost(x, y, w, b):
"""
Computes the cost function for linear regression.

Args:
x (ndarray): Shape (m,) Input to the model (Population of cities)
y (ndarray): Shape (m,) Label (Actual profits for the cities)
w, b (scalar): Parameters of the model

Returns
total_cost (float): The cost of using w,b as the parameters for linear regression
to fit the data points in x and y
"""
# number of training examples
m = x.shape[0]

# You need to return this variable correctly
total_cost = 0

### START CODE HERE ###
cost_sum = 0
for i in range(m):
f_wb = w * x[i] + b
cost = (f_wb - y[i]) ** 2
cost_sum = cost_sum + cost
total_cost = (1 / (2 * m)) * cost_sum

### END CODE HERE ###

return total_cost

Exercise 2

# UNQ_C2
# GRADED FUNCTION: compute_gradient
def compute_gradient(x, y, w, b):
"""
Computes the gradient for linear regression
Args:
x (ndarray): Shape (m,) Input to the model (Population of cities)
y (ndarray): Shape (m,) Label (Actual profits for the cities)
w, b (scalar): Parameters of the model
Returns
dj_dw (scalar): The gradient of the cost w.r.t. the parameters w
dj_db (scalar): The gradient of the cost w.r.t. the parameter b
"""

# Number of training examples
m = x.shape[0]

# You need to return the following variables correctly
dj_dw = 0
dj_db = 0

### START CODE HERE ###
for i in range(m):
f_wb = w * x[i] + b
dj_dw_i = (f_wb - y[i]) * x[i]
dj_db_i = f_wb - y[i]
dj_db += dj_db_i
dj_dw += dj_dw_i
dj_dw = dj_dw / m
dj_db = dj_db / m

### END CODE HERE ###

return dj_dw, dj_db

作者:​​楚千羽​

出处:​​javascript:void(0)​

本文来自博客园,本文作者:​​楚千羽​​​,转载请注明原文链接:​​javascript:void(0)p/16438519.html​

本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须在文章页面给出原文连接,否则保留追究法律责任的权利!