题意
给出一个\(n \times n\)的矩阵,允许修改\(k\)次,求一条从\((1, 1)\)到\((n, n)\)的路径。要求字典序最小
Sol
很显然的一个思路是对于每个点,预处理出从\((1, 1)\)到该点最多能经过多少个\(1\)
然后到这里我就不会做了。。
接下来应该还是比较套路的吧,就是类似于BFS一样,可以枚举步数,然后再枚举向下走了几次,有点分层图的感觉。
/*
*/
#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long
#define LL long long
#define rg register
#define pt(x) printf("%d ", x);
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 2001, INF = 1e9 + 10, mod = 1e9 + 7, B = 1;
const double eps = 1e-9;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, K, vis[MAXN][MAXN], f[MAXN][MAXN];
char s[MAXN][MAXN];
int main() {
N = read(); K = read();
for(int i = 1; i <= N; i++) scanf("%s", s[i] + 1);
for(int i = 1; i <= N; i++) {
for(int j = 1; j <= N; j++) {
f[i][j] = max(f[i - 1][j], f[i][j - 1]);
if(s[i][j] == 'a') f[i][j]++;
if(i + j - 1 - f[i][j] <= K) s[i][j] = 'a';
}
}
putchar(s[1][1]); vis[1][1] = 1;
for(int i = 3; i <= N << 1; i++) {//all step
char now = 'z' + 1;
for(int j = 1; j < i; j++) { // num of down
if(j > N || (i - j > N)) continue;
if(!vis[j - 1][i - j] && !vis[j][i - j - 1]) continue;
now = min(now, s[j][i - j]);
}
putchar(now);
for(int j = 1; j < i; j++) { // num of down
if(j > N || (i - j > N)) continue;
if(!vis[j - 1][i - j] && !vis[j][i - j - 1]) continue;
if(s[j][i - j] == now) vis[j][i - j] = 1;
}
}
return 0;
}
/*
*/