传送


这题还真是挺奇特的,平时很少遇到。


一句话题意:给定两个\(n*n\)的矩阵\(a,b\),让你找一条从\((1,1)\)到\((n,n)\)的路径(只能向右或向下),使\((\sum a_x) * (\sum b_x)\)最大(\(1 \leqslant n \leqslant 100\))。数据随机。


对于这个数据随机,就很有意思,做法千奇百怪。

但我还是比较喜欢题解的做法,因为该做法对于不随机的数据,只会超时或超空间,但是正确性有保证。

令\(dp[i][j][k]\)表示到点\((i,j)\),且当\(\sum a_x=k\)时,最大的\(\sum b_x\).那么答案就是\(max \{ dp[n][n][k] * k \}\).

转移显然。考虑优化:我们不开第三维的\(k\),而是对于每一个\(dp[i][j]\)开一个vector递增的存下来所有的\(k\)对应的dp值。那么如果有\(k_x < k_y\),且\(dp_x < dp_y\),那么\(x_k\)必然不可能成为答案,就将其弹出。

这样在随机数据下,\(k\)的峰值只有几千(题解这么说的),复杂度\(O(n^2k)\),能过。


不过题解的代码写的挺漂亮的,在从\(dp[i][j-1]\)和\(dp[i - 1][j]\)转移到\(dp[i][j]\)时,不用拿过来再排序,而是像归并排序一样跳两个指针,减少了复杂度。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<queue>
#include<assert.h>
#include<ctime>
using namespace std;
#define enter puts("") 
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
#define forE(i, x, y) for(int i = head[x], y; ~i && (y = e[i].to); i = e[i].nxt)
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 102;
const int maxd = 1e6 + 5;
In ll read()
{
	ll ans = 0;
	char ch = getchar(), las = ' ';
	while(!isdigit(ch)) las = ch, ch = getchar();
	while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
	if(las == '-') ans = -ans;
	return ans;
}
In void write(ll x)
{
	if(x < 0) x = -x, putchar('-');
	if(x >= 10) write(x / 10);
	putchar(x % 10 + '0');
}

int n, a[maxn][maxn], b[maxn][maxn];

#define pr pair<ll, ll>	//sum{ai}, max{sum{bi}}
#define mp make_pair
#define F first
#define S second
#define VP vector<pr>
VP dp[maxn][maxn];		//按sum{ai}递增排 
pr D[maxd];
int cnt = 0;
In void add(const pr& d)
{
	while(cnt && D[cnt].S <= d.S) cnt--;
	if(!cnt || d.F > D[cnt].F) D[++cnt] = d;
}
In void merge(const VP& d1, const VP& d2, VP& d)
{
	int n = d1.size(), m = d2.size(), i = 0, j = 0;
	cnt = 0;
	while(i < n && j < m) add(d1[i].F < d2[j].F ? d1[i++] : d2[j++]);
	while(i < n) add(d1[i++]);
	while(j < m) add(d2[j++]);
	d.resize(cnt);
	for(int i = 1; i <= cnt; ++i) d[i - 1] = D[i];
}
In ll solve()
{
	dp[1][1].clear(); dp[1][1].push_back(mp(a[1][1], b[1][1]));
	for(int i = 1; i <= n; ++i)
		for(int j = 1; j <= n; ++j)
		{
			if(i == 1 && j == 1) continue;
			else if(i == 1) dp[i][j] = dp[i][j - 1];
			else if(j == 1) dp[i][j] = dp[i - 1][j];
			else merge(dp[i - 1][j], dp[i][j - 1], dp[i][j]);
			for(auto &x : dp[i][j]) x.F += a[i][j], x.S += b[i][j];
		}
	ll ans = 0;
	for(auto x : dp[n][n]) ans = max(ans, x.F * x.S);
	return ans;
}

int main()
{
	int T = read();
	while(T--)
	{
		n = read();
		for(int i = 1; i <= n; ++i)
			for(int j = 1; j <= n; ++j) a[i][j] = read();
		for(int i = 1; i <= n; ++i)
			for(int j = 1; j <= n; ++j) b[i][j] = read();
		write(solve()), enter;
	}
	return 0;
}