Verilog 生成块


generate块允许乘以模块实例或执行任何模块的条件实例化。它提供了基于 Verilog 参数构建设计的能力。当需要多次重复相同的操作或模块实例,或者必须根据给定的 Verilog 参数有条件地包含某些代码时,这些语句特别方便。

generate块不能包含端口、参数、声明specparamspecify块。但是,其他模块项目和其他生成块是允许的。所有生成的实例都在module关键字generate和之间进行编码endgenerate

生成的实例化可以有模块、连续赋值alwaysinitial块和用户定义的原语。有两种类型的生成结构——循环和条件。

  • 生成for循环
  • 否则生成
  • 生成案例

生成for循环

半加器将在另一个名为my_design的顶级设计模块中使用for 循环构造实例化N次。必须使用关键字声明循环变量,该关键字告诉工具该变量将在生成块的详细说明期间专门使用。generategenvar

// Design for a half-adder
module ha ( input   a, b,
            output  sum, cout);

  assign sum  = a ^ b;
  assign cout = a & b;
endmodule

// A top level design that contains N instances of half adder
module my_design
	#(parameter N=4)
		(	input [N-1:0] a, b,
			output [N-1:0] sum, cout);

	// Declare a temporary loop variable to be used during
	// generation and won't be available during simulation
	genvar i;

	// Generate for loop to instantiate N times
	generate
		for (i = 0; i < N; i = i + 1) begin
          ha u0 (a[i], b[i], sum[i], cout[i]);
		end
	endgenerate
endmodule

试验台

testbench 参数用于控制设计中半加器实例的数量。当N为 2 时,my_design将有两个半加器实例。

module tb;
	parameter N = 2;
  reg  [N-1:0] a, b;
  wire [N-1:0] sum, cout;

  // Instantiate top level design with N=2 so that it will have 2
  // separate instances of half adders and both are given two separate
  // inputs
  my_design #(.N(N)) md( .a(a), .b(b), .sum(sum), .cout(cout));

  initial begin
    a <= 0;
    b <= 0;

    $monitor ("a=0x%0h b=0x%0h sum=0x%0h cout=0x%0h", a, b, sum, cout);

    #10 a <= 'h2;
    		b <= 'h3;
    #20 b <= 'h4;
    #10 a <= 'h5;
  end
endmodule

a[0]和b[0]给出输出sum[0]和cout[0]而a[1]和b[1]给出输出sum[1]和cout[1]。


模拟日志

ncsim > 运行
a=0x0 b=0x0 sum=0x0 cout=0x0
a=0x2 b=0x3 总和=0x1 cout=0x2
a=0x2 b=0x0 sum=0x2 cout=0x0
a=0x1 b=0x0 sum=0x1 cout=0x0
ncsim: *W,RNQUIE:模拟完成。
ncsim > 退出

看到详细的 RTL 确实有两个由generate块生成的半加器实例。

生成如果

下面显示的是一个使用if else内部generate结构在两个不同的多路复用器实现之间进行选择的示例。第一个设计使用assign语句来实现多路复用器,而第二个设计使用case语句。在顶层设计模块中定义了一个名为USE_CASE的参数,用于在两个选项之间进行选择。

// Design #1: Multiplexer design uses an "assign" statement to assign
// out signal
module mux_assign ( input a, b, sel,
                   output out);
  assign out = sel ? a : b;

  // The initial display statement is used so that
  // we know which design got instantiated from simulation
  // logs
  initial
  	$display ("mux_assign is instantiated");
endmodule

// Design #2: Multiplexer design uses a "case" statement to drive
// out signal
module mux_case (input a, b, sel,
                 output reg out);
  always @ (a or b or sel) begin
  	case (sel)
    	0 : out = a;
   	 	1 : out = b;
  	endcase
  end

  // The initial display statement is used so that
  // we know which design got instantiated from simulation
  // logs
  initial
    $display ("mux_case is instantiated");
endmodule

// Top Level Design: Use a parameter to choose either one
module my_design (	input a, b, sel,
         			output out);
  parameter USE_CASE = 0;

  // Use a "generate" block to instantiate either mux_case
  // or mux_assign using an if else construct with generate
  generate
  	if (USE_CASE)
      mux_case mc (.a(a), .b(b), .sel(sel), .out(out));
    else
      mux_assign ma (.a(a), .b(b), .sel(sel), .out(out));
  endgenerate

endmodule

试验台

Testbench 实例化顶层模块my_design并将参数USE_CASE设置为 1,以便实例化设计 usingcase语句。

module tb;
	// Declare testbench variables
  reg a, b, sel;
  wire out;
  integer i;

  // Instantiate top level design and set USE_CASE parameter to 1 so that
  // the design using case statement is instantiated
  my_design #(.USE_CASE(1)) u0 ( .a(a), .b(b), .sel(sel), .out(out));

  initial begin
  	// Initialize testbench variables
  	a <= 0;
    b <= 0;
    sel <= 0;

    // Assign random values to DUT inputs with some delay
    for (i = 0; i < 5; i = i + 1) begin
      #10 a <= $random;
      	  b <= $random;
          sel <= $random;
      $display ("i=%0d a=0x%0h b=0x%0h sel=0x%0h out=0x%0h", i, a, b, sel, out);
    end
  end
endmodule

当参数USE_CASE为1时,从仿真日志可以看出,multiplexer design usingcase语句被实例化了。当USE_CASE为零时,多路复用器设计 usingassign语句被实例化。这可以从模拟日志中打印的显示语句中看出。


模拟日志

// 当 USE_CASE = 1 时
ncsim > 运行
mux_case 被实例化
i=0 a=0x0 b=0x0 选择=0x0 输出=0x0
i=1 a=0x0 b=0x1 选择=0x1 输出=0x1
i=2 a=0x1 b=0x1 选择=0x1 输出=0x1
i=3 a=0x1 b=0x0 选择=0x1 输出=0x0
i=4 a=0x1 b=0x0 选择=0x1 输出=0x0
ncsim: *W,RNQUIE:模拟完成。

// 当 USE_CASE = 0 时
ncsim > 运行
mux_assign 被实例化
i=0 a=0x0 b=0x0 选择=0x0 输出=0x0
i=1 a=0x0 b=0x1 选择=0x1 输出=0x0
i=2 a=0x1 b=0x1 选择=0x1 输出=0x1
i=3 a=0x1 b=0x0 选择=0x1 输出=0x1
i=4 a=0x1 b=0x0 选择=0x1 输出=0x1
ncsim: *W,RNQUIE:模拟完成。

生成案例

generate case 允许模块、initial 和 always 块根据case表达式在另一个模块中实例化,以从多个选项中选择一个。

// Design #1: Half adder
module ha (input a, b,
           output reg sum, cout);
  always @ (a or b)
  {cout, sum} = a + b;

  initial
    $display ("Half adder instantiation");
endmodule

// Design #2: Full adder
module fa (input a, b, cin,
           output reg sum, cout);
  always @ (a or b or cin)
  {cout, sum} = a + b + cin;

    initial
      $display ("Full adder instantiation");
endmodule

// Top level design: Choose between half adder and full adder
module my_adder (input a, b, cin,
                 output sum, cout);
  parameter ADDER_TYPE = 1;

  generate
    case(ADDER_TYPE)
      0 : ha u0 (.a(a), .b(b), .sum(sum), .cout(cout));
      1 : fa u1 (.a(a), .b(b), .cin(cin), .sum(sum), .cout(cout));
    endcase
  endgenerate
endmodule

试验台

module tb;
  reg a, b, cin;
  wire sum, cout;

  my_adder #(.ADDER_TYPE(0)) u0 (.a(a), .b(b), .cin(cin), .sum(sum), .cout(cout));

  initial begin
    a <= 0;
    b <= 0;
    cin <= 0;

    $monitor("a=0x%0h b=0x%0h cin=0x%0h cout=0%0h sum=0x%0h",
             a, b, cin, cout, sum);

    for (int i = 0; i < 5; i = i + 1) begin
      #10 a <= $random;
      b <= $random;
      cin <= $random;
    end
  end
endmodule

请注意,由于实例化了半加器,因此cin对输出sum和cout没有任何影响。

模拟日志

ncsim > 运行
半加器实例化
a=0x0 b=0x0 cin=0x0 cout=00 sum=0x0
a=0x0 b=0x1 cin=0x1 cout=00 sum=0x1
a=0x1 b=0x1 cin=0x1 cout=01 sum=0x0
a=0x1 b=0x0 cin=0x1 cout=00 sum=0x1
ncsim: *W,RNQUIE:模拟完成。