pandas中的reindex方法可以为series和dataframe添加或者删除索引。
方法:serise.reindex()、dataframe.reindex()
如果新添加的索引没有对应的值,则默认为nan。如果减少索引,就相当于一个切片操作。

import numpy as np
import pandas as pd
from pandas import Series, DataFrame

np.random.seed(666)

# series reindex
s1 = Series([1, 2, 3, 4], index=['A', 'B', 'C', 'D'])
print(s1)
'''
A    1
B    2
C    3
D    4
dtype: int64
'''


# 重新指定 index, 多出来的index,可以使用fill_value 填充

print(s1.reindex(index=['A', 'B', 'C', 'D', 'E'], fill_value = 10))
'''
A     1
B     2
C     3
D     4
E    10
dtype: int64
'''
s2 = Series(['A', 'B', 'C'], index = [1, 5, 10])
print(s2)
'''
1     A
5     B
10    C
dtype: object

#  reindex 的使用, 既可以相当于切片, 又可以相当于增加某列, 默认为nan, ser可用fill_value填充。 pandas 可以用 fillna(method=''pad'') 来填充

'''

# 修改索引,
# 将s2的索引增加到15个
# 如果新增加的索引值不存在,默认为 Nan
print(s2.reindex(index=range(15)))
'''
eg:
0     NaN
1       A
2     NaN
3     NaN
4     NaN
5       B
6     NaN
7     NaN
8     NaN
9     NaN
10      C
11    NaN
12    NaN
13    NaN
14    NaN
dtype: object

 

'''
# ffill : foreaward fill 向前填充,
# 如果新增加索引的值不存在,那么按照前一个非nan的值填充进去
print(s2.reindex(index=range(15), method='ffill'))
'''

 

0     NaN
1       A
2       A
3       A
4       A
5       B
6       B
7       B
8       B
9       B
10      C
11      C
12      C
13      C
14      C
dtype: object
eg2: 
'''
# reindex dataframe
df1 = DataFrame(np.random.rand(25).reshape([5, 5]), index=['A', 'B', 'D', 'E', 'F'], columns=['c1', 'c2', 'c3', 'c4', 'c5'])
print(df1)
'''
         c1        c2        c3        c4        c5
A  0.700437  0.844187  0.676514  0.727858  0.951458
B  0.012703  0.413588  0.048813  0.099929  0.508066
D  0.200248  0.744154  0.192892  0.700845  0.293228
E  0.774479  0.005109  0.112858  0.110954  0.247668
F  0.023236  0.727321  0.340035  0.197503  0.909180
'''
# 为 dataframe 添加一个新的索引
# 可以看到 自动 扩充为 nan
print(df1.reindex(index=['A', 'B', 'C', 'D', 'E', 'F']))
''' 自动填充为 nan
         c1        c2        c3        c4        c5
A  0.700437  0.844187  0.676514  0.727858  0.951458
B  0.012703  0.413588  0.048813  0.099929  0.508066
C       NaN       NaN       NaN       NaN       NaN
D  0.200248  0.744154  0.192892  0.700845  0.293228
E  0.774479  0.005109  0.112858  0.110954  0.247668
F  0.023236  0.727321  0.340035  0.197503  0.909180
'''

# 扩充列, 也是一样的

print(df1.reindex(columns=['c1', 'c2', 'c3', 'c4', 'c5', 'c6']))
'''
         c1        c2        c3        c4        c5  c6
A  0.700437  0.844187  0.676514  0.727858  0.951458 NaN
B  0.012703  0.413588  0.048813  0.099929  0.508066 NaN
D  0.200248  0.744154  0.192892  0.700845  0.293228 NaN
E  0.774479  0.005109  0.112858  0.110954  0.247668 NaN
F  0.023236  0.727321  0.340035  0.197503  0.909180 NaN
'''

# 减小 index
print(s1.reindex(['A', 'B']))

相当于一个切割效果

''' 
A    1
B    2
dtype: int64
'''
print(df1.reindex(index=['A', 'B']))
''' 同样是一个切片的效果
         c1        c2        c3        c4        c5
A  0.601977  0.619927  0.251234  0.305101  0.491200
B  0.244261  0.734863  0.569936  0.889996  0.017936
'''

# 对于一个 serie 来说,可以使用 drop,来丢掉某些 index
 

print(s1.drop('A'))
''' 就只剩下 三个了
B    2
C    3
D    4
dtype: int64
'''
# dataframe drop(A) 直接去掉一行
print(df1.drop('A', axis=0))
''' axis 默认 是 行
         c1        c2        c3        c4        c5
B  0.571883  0.254364  0.530883  0.295224  0.352663
D  0.858452  0.379495  0.593284  0.786078  0.949718
E  0.556276  0.643187  0.808664  0.289422  0.501041
F  0.737993  0.286072  0.332714  0.873371  0.421615
'''

print(df1.drop('c1', axis=1))
''' 将 c1 的列 去掉
         c2        c3        c4        c5
A  0.326681  0.247832  0.601982  0.145905
B  0.373961  0.393819  0.439284  0.926706
D  0.558490  0.617851  0.461280  0.373102
E  0.030434  0.566498  0.383103  0.739243
F  0.982220  0.989826  0.957863  0.411514