EventBus与MQ的关系:
两者没有关系,只是应用场景有些类似.
一个是观察者模式,一个是消息中间件
再具体点就是eventbus的消息是不能持久化的,拓机就丢掉,是不能集群的
eventbus可同步可异步,MQ只有异步
eventbus可以定义多个subscriber,然后指定顺序执行
eventbus类似spring的applicationevent
EventBus是Guava的事件处理机制,是设计模式中的观察者模式(生产/消费者编程模型)的优雅实现。
对于事件监听和发布订阅模式,EventBus是一个非常优雅和简单解决方案,我们不用创建复杂的类和接口层次结构。
Observer模式是比较常用的设计模式之一,虽然有时候在具体代码里,它不一定叫这个名字,比如改头换面叫个Listener,但模式就是这个模式。手工实现一个Observer也不是多复杂的一件事,只是因为这个设计模式实在太常用了,Java就把它放到了JDK里面:Observable和Observer,从JDK 1.0里,它们就一直在那里。从某种程度上说,它简化了Observer模式的开发,至少我们不用再手工维护自己的Observer列表了。不过,如前所述,JDK里的Observer从1.0就在那里了,直到Java 7,它都没有什么改变,就连通知的参数还是Object类型。要知道,Java 5就已经泛型了。Java 5是一次大规模的语法调整,许多程序库从那开始重新设计了API,使其更简洁易用。当然,那些不做应对的程序库,多半也就过时了。这也就是这里要讨论知识更新的原因所在。今天,对于普通的应用,如果要使用Observer模式该如何做呢?答案是Guava的EventBus。
EventBus基本用法:
使用Guava之后, 如果要订阅消息, 就不用再继承指定的接口, 只需要在指定的方法上加上@Subscribe注解即可。代码如下:
消息封装类:
消息接受类:
测试类及输出结果:
MultiListener的使用:
只需要在要订阅消息的方法上加上@Subscribe注解即可实现对多个消息的订阅,代码如下:
测试类:
Dead Event:
如果EventBus发送的消息都不是订阅者关心的称之为Dead Event。实例如下:
测试类:
说明:如果没有消息订阅者监听消息, EventBus将发送DeadEvent消息,这时我们可以通过log的方式来记录这种状态。
Event的继承:
如果Listener A监听Event A, 而Event A有一个子类Event B, 此时Listener A将同时接收Event A和B消息,实例如下:
Listener 类:
测试类:
说明:在这个方法中,我们看到第一个事件(新的整数(100))是收到两个听众,但第二个(新长(200 l))只能到达NumberListener作为整数一不是创建这种类型的事件。可以使用此功能来创建更通用的监听器监听一个广泛的事件和更详细的具体的特殊的事件。
一个综合实例:
说明:用telnet命令登录:telnet 127.0.0.1 4444 ,如果你连接多个实例你会看到任何消息发送被传送到其他实例。
EventBusExplained
Colin Decker edited this page on 25 Jul 2015 · 5 revisions
55
- Introduction
- Basic Utilities
- Collections
- Caches
- Removal Listeners
- Refresh
- Timed Eviction
- Size Caps
- Garbage Collection
- Explicit Removals
- Concurrency
- Networking
- Ranges
- I/O
- EventBus
- Math
- Release 19
- Release 18
- Release 17
- Release 16
- Release 15
- Release 14
- Release 13
- Release 12
- Release 11
- Release 10
- Tips
- Philosophy
- Building with Guava
- Shrinking JARs with ProGuard
- Translating from Apache Commons
- Guava and Compatibility
- Idea Graveyard
- Friends of Guava
- How to Contribute
Clone this wiki locally
EventBus
allows publish-subscribe-style communication between components without requiring the components to explicitly register with one another (and thus be aware of each other). It is designed exclusively to replace traditional Java in-process event distribution using explicit registration. It is not a general-purpose publish-subscribe system, nor is it intended for interprocess communication.
Example
One-Minute Guide
Converting an existing EventListener
-based system to use the EventBus
is easy.
For Listeners
To listen for a specific flavor of event (say, a CustomerChangeEvent
)...
- ...in traditional Java events: implement an interface defined with the event -- such as
CustomerChangeEventListener
. - ...with
EventBus
: create a method that acceptsCustomerChangeEvent
as its sole argument, and mark it with the@Subscribe annotation.
To register your listener methods with the event producers...
- ...in traditional Java events: pass your object to each producer's
registerCustomerChangeEventListener
method. These methods are rarely defined in common interfaces, so in addition to knowing every possible producer, you must also know its type. - ...with
EventBus
: pass your object to theEventBus.register(Object) method on anEventBus
. You'll need to make sure that your object shares anEventBus
instance with the event producers.
To listen for a common event supertype (such as EventObject
or Object
)...
- ...in traditional Java events: not easy.
- ...with
EventBus
: events are automatically dispatched to listeners of any supertype, allowing listeners for interface types or "wildcard listeners" forObject
.
To listen for and detect events that were dispatched without listeners...
- ...in traditional Java events: add code to each event-dispatching method (perhaps using AOP).
- ...with
EventBus
: subscribe toDeadEvent. TheEventBus
will notify you of any events that were posted but not delivered. (Handy for debugging.)
For Producers
To keep track of listeners to your events...
- ...in traditional Java events: write code to manage a list of listeners to your object, including synchronization, or use a utility class like
EventListenerList
. - ...with
EventBus
:EventBus
does this for you.
To dispatch an event to listeners...
- ...in traditional Java events: write a method to dispatch events to each event listener, including error isolation and (if desired) asynchronicity.
- ...with
EventBus
: pass the event object to anEventBus
'sEventBus.post(Object) method.
Glossary
The EventBus
system and code use the following terms to discuss event distribution:
Event | Any object that may be posted to a bus. |
Subscribing | The act of registering a listener with an |
Listener | An object that wishes to receive events, by exposing handler methods. |
Handler method | A public method that the |
Posting an event | Making the event available to any listeners through the |
FAQ
Why must I create my own Event Bus, rather than using a singleton?
EventBus
doesn't specify how you use it; there's nothing stopping your application from having separate EventBus
instances for each component, or using separate instances to separate events by context or topic. This also makes it trivial to set up and tear down EventBus
objects in your tests.
Of course, if you'd like to have a process-wide EventBus
singleton, there's nothing stopping you from doing it that way. Simply have your container (such as Guice) create the EventBus
as a singleton at global scope (or stash it in a static field, if you're into that sort of thing).
In short, EventBus
is not a singleton because we'd rather not make that decision for you. Use it how you like.
Can I unregister a listener from the Event Bus?
Yes, using EventBus.unregister
, but we find this is needed only rarely:
- Most listeners are registered on startup or lazy initialization, and persist for the life of the application.
- Scope-specific
EventBus
instances can handle temporary event distribution (e.g. distributing events among request-scoped objects) - For testing,
EventBus
instances can be easily created and thrown away, removing the need for explicit unregistration.
Why use an annotation to mark handler methods, rather than requiring the listener to implement an interface?
We feel that the Event Bus's @Subscribe
annotation conveys your intentions just as explicitly as implementing an interface (or perhaps more so), while leaving you free to place event handler methods wherever you wish and give them intention-revealing names.
Traditional Java Events use a listener interface which typically sports only a handful of methods -- typically one. This has a number of disadvantages:
- Any one class can only implement a single response to a given event.
- Listener interface methods may conflict.
- The method must be named after the event (e.g.
handleChangeEvent
), rather than its purpose (e.g.recordChangeInJournal
). - Each event usually has its own interface, without a common parent interface for a family of events (e.g. all UI events).
The difficulties in implementing this cleanly has given rise to a pattern, particularly common in Swing apps, of using tiny anonymous classes to implement event listener interfaces.
Compare these two cases:
versus
The intent is actually clearer in the second case: there's less noise code, and the event handler has a clear and meaningful name.
What about a generic Handler<T>
interface?
Some have proposed a generic
Handler<T>
interface for EventBus
listeners. This runs into issues with Java's use of type erasure, not to mention problems in usability.
Let's say the interface looked something like the following:
Due to erasure, no single class can implement a generic interface more than once with different type parameters. This is a giant step backwards from traditional Java Events, where even if
actionPerformed
and keyPressed
aren't very meaningful names, at least you can implement both methods!
Doesn't EventBus
destroy static typing and eliminate automated refactoring support?
Some have freaked out about EventBus
's register(Object)
and post(Object)
methods' use of the Object
type.
Object
is used here for a good reason: the Event Bus library places no restrictions on the types of either your event listeners (as in register(Object)
) or the events themselves (in post(Object)
).
Event handler methods, on the other hand, must explicitly declare their argument type -- the type of event desired (or one of its supertypes). Thus, searching for references to an event class will instantly find all handler methods for that event, and renaming the type will affect all handler methods within view of your IDE (and any code that creates the event).
It's true that you can rename your @Subscribed
event handler methods at will; Event Bus will not stop this or do anything to propagate the rename because, to Event Bus, the names of your handler methods are irrelevant. Test code that calls the methods directly, of course, will be affected by your renaming -- but that's what your refactoring tools are for. We see this as a feature, not a bug: being able to rename your handler methods at will lets you make their meaning clearer.
What happens if I register
a listener without any handler methods?
Nothing at all.
The Event Bus was designed to integrate with containers and module systems, with Guice as the prototypical example. In these cases, it's convenient to have the container/factory/environment passevery created object to an EventBus
's register(Object)
method.
This way, any object created by the container/factory/environment can hook into the system's event model simply by exposing handler methods.
What Event Bus problems can be detected at compile time?
Any problem that can be unambiguously detected by Java's type system. For example, defining a handler method for a nonexistent event type.
What Event Bus problems can be detected immediately at registration?
Immediately upon invoking register(Object)
, the listener being registered is checked for the well-formedness of its handler methods. Specifically, any methods marked with @Subscribe
must take only a single argument.
Any violations of this rule will cause an IllegalArgumentException
to be thrown.
(This check could be moved to compile-time using APT, a solution we're researching.)
What EventBus
problems may only be detected later, at runtime?
If a component posts events with no registered listeners, it may indicate an error (typically an indication that you missed a @Subscribe
annotation, or that the listening component is not loaded).
(Note that this is not necessarily indicative of a problem. There are many cases where an application will deliberately ignore a posted event, particularly if the event is coming from code you don't control.)
To handle such events, register a handler method for the DeadEvent
class. Whenever EventBus
receives an event with no registered handlers, it will turn it into a DeadEvent
and pass it your way -- allowing you to log it or otherwise recover.
How do I test event listeners and their handler methods?
Because handler methods on your listener classes are normal methods, you can simply call them from your test code to simulate the EventBus
.
Why can't I do with EventBus
?
EventBus
is designed to deal with a large class of use cases really, really well. We prefer hitting the nail on the head for most use cases to doing decently on all use cases.
Additionally, making EventBus
extensible -- and making it useful and productive to extend, while stillallowing ourselves to make additions to the core EventBus
API that don't conflict with any of your extensions -- is an extremely difficult problem.
If you really, really need magic thing X, that EventBus
can't currently provide, you should file an issue, and then design your own alternative.
https://github.com/google/guava/wiki/EventBusExplained#for-listeners