链接:http://acm.hdu.edu.cn/showproblem.php?pid=1054

题意:一个熊孩子玩策略游戏,他须要用最少的士兵守卫最多的道路。假设这个顶点有士兵。则和这个点相连的全部边都会被保护,问保护全部的道路最少须要的士兵数量。


思路:这实际上就是一个最小点覆盖,二分图的最小点覆盖 == 最大匹配,这不是一个二分图,我们把n个点扩成2 * n个。把他转换为二分图,最后最大匹配再除以2就是原图的最大匹配。


Hopcroft-Karp增广模板

#include<cstring>
#include<string>
#include<fstream>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cctype>
#include<algorithm>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<stack>
#include<ctime>
#include<cstdlib>
#include<functional>
#include<cmath>
using namespace std;
#define PI acos(-1.0)
#define MAXN 1510
#define eps 1e-7
#define INF 0x3F3F3F3F      //0x7FFFFFFF
#define LLINF 0x7FFFFFFFFFFFFFFF
#define seed 1313131
#define MOD 1000000007
#define ll long long
#define ull unsigned ll
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1

/*
二分图匹配(Hopcroft-Carp的算法)。

顶点下标从0開始 调用:res=MaxMatch(); Nx,Ny要初始化!!! 时间复杂大为 O(V^0.5 E) 适用于数据较大(点较多)的二分匹配 */ struct node{ int v,next; }edge[MAXN*MAXN]; int head[MAXN],cnt; int Mx[MAXN],My[MAXN],Nx,Ny; int dx[MAXN],dy[MAXN],dis; bool vis[MAXN]; void add_edge(int a,int b){ edge[cnt].v = b; edge[cnt].next = head[a]; head[a] = cnt++; } bool searchP(){ queue<int>q; dis = INF; memset(dx,-1,sizeof(dx)); memset(dy,-1,sizeof(dy)); for(int i = 0; i < Nx; i++) if(Mx[i] == -1){ q.push(i); dx[i] = 0; } while(!q.empty()){ int u = q.front(); q.pop(); if(dx[u] > dis) break; for(int i = head[u]; i != -1; i = edge[i].next){ int v = edge[i].v; if(dy[v] == -1){ dy[v] = dx[u] + 1; if(My[v] == -1) dis = dy[v]; else{ dx[My[v]] = dy[v] + 1; q.push(My[v]); } } } } return dis != INF; } bool DFS(int u){ for(int i = head[u]; i != -1; i = edge[i].next){ int v = edge[i].v; if(!vis[v] && dy[v] == dx[u] + 1){ vis[v] = 1; if(My[v] != -1 && dy[v] == dis) continue; if(My[v] == -1 || DFS(My[v])){ My[v] = u; Mx[u] = v; return 1; } } } return 0; } int MaxMatch(){ int res = 0; memset(Mx,-1,sizeof(Mx)); memset(My,-1,sizeof(My)); while(searchP()){ memset(vis,0,sizeof(vis)); for(int i = 0; i < Nx; i++) if(Mx[i] == -1 && DFS(i)) res++; } return res; } int main(){ int n,i,j; int a,m,b; while(scanf("%d", &n)!=EOF){ cnt = 0; memset(head,-1,sizeof(head)); for(i = 0; i < n; i++){ scanf("%d:(%d)", &a, &m); while(m--){ scanf("%d", &b); add_edge(a,b); add_edge(b,a); } } Nx = Ny = n; int ans = MaxMatch(); printf("%d\n", ans / 2); } return 0; }