import tensorflow as tf x = tf.random.normal([2, 4]) w = tf.random.normal([4, 3]) b = tf.zeros([3]) y = tf.constant([2, 0]) with tf.GradientTape() as tape: tape.watch([w, b]) # axis=1,表示结果[b,3]中的3这个维度为概率 prob = tf.nn.softmax(x @ w + b, axis=1) # 2 --> 001; 0 --> 100 loss = tf.reduce_mean(tf.losses.MSE(tf.one_hot(y, depth=3), prob)) grads = tape.gradient(loss, [w, b])
grads[0]
grads[1]