145. 二叉树的后序遍历
知识点:二叉树;递归;Morris遍历
题目描述
给定一个二叉树的根节点 root ,返回它的 后序 遍历。
示例
输入: [1,null,2,3]
1
\
2
/
3
输出: [3,2,1]
解法一:递归
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
List<Integer> list = new ArrayList<>();
public List<Integer> postorderTraversal(TreeNode root) {
if(root == null) return list;
postorderTraversal(root.left);
postorderTraversal(root.right);
list.add(root.val);
return list;
}
}
时间复杂度:0(N),每个节点恰好被遍历一次;
空间复杂度:O(N),递归过程中栈的开销;
解法二:迭代法
后序遍历可以用前序遍历来解决,想一下前序遍历:根左右,我们先压右树再压左树。怎么实现根右左呢,可以先压左树再压右树嘛,然后反过来不就是左右根了吗?(反过来用栈来实现,栈一个很大的作用就是实现逆序)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
List<Integer> list = new ArrayList<>();
public List<Integer> postorderTraversal(TreeNode root) {
Stack<TreeNode> stackA = new Stack<>();
Stack<TreeNode> stackB = new Stack<>();
if(root == null) return list;
stackA.push(root);
while(!stackA.isEmpty()){
TreeNode top = stackA.pop();
stackB.push(top);
if(top.left != null) stackA.push(top.left);
if(top.right != null) stackA.push(top.right);
}
while(!stackB.isEmpty()){
list.add(stackB.pop().val);
}
return list;
}
}
解法三:Morris遍历
构建从下到上的连接,一条路能够走遍所有节点;
当我们返回上层之后,也就是将连线断开的时候,打印下层的单链表。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
List<Integer> list = new ArrayList<>();
public List<Integer> postorderTraversal(TreeNode root) {
if(root == null) return list;
TreeNode cur = root;
TreeNode mostRightNode = null;
while(cur != null){
mostRightNode = cur.left;
if(mostRightNode != null){
while(mostRightNode.right != null && mostRightNode.right != cur){
mostRightNode = mostRightNode.right;
}
if(mostRightNode.right == null){
mostRightNode.right = cur;
cur = cur.left;
continue;
}else{
mostRightNode.right = null;
postMorrisPrint(cur.left); //第二次到达时打印下一层的单链表;
cur = cur.right;
}
}else{
cur = cur.right;
}
}
postMorrisPrint(root);
return list;
}
private void postMorrisPrint(TreeNode node){
TreeNode reverseList = reverseList(node); //反转单链表;
TreeNode cur = reverseList;
while(cur != null){
list.add(cur.val);
cur = cur.right;
}
reverseList(reverseList);
}
private TreeNode reverseList(TreeNode node){
TreeNode pre = null;
TreeNode cur = node;
while(cur != null){
TreeNode next = cur.right;
cur.right = pre;
pre = cur;
cur = next;
}
return pre;
}
}
体会
后序遍历的特殊在于其Morris遍历;