题意: 给定一个无向图,问最少加入多少条边,使得这个图成为连通图
思路:首先注意题目给出的无向图可能是非连通的,即存在孤立点。处理孤立点之后。其它就能够当作连通块来处理。事实上跟POJ3352非常像,仅仅只是存在孤立点而已。所以找出桥,缩点,然后统计度数为0(伸出两条边)的点u和度数为1(伸出一条边)的点。最后的答案为(2 * u + v + 1) / 2。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <vector> #include <utility> #include <algorithm> using namespace std; const int MAXN = 1005; struct Edge{ int to, next; }edge[MAXN * 100]; int head[MAXN], tot; int Low[MAXN], DFN[MAXN], dg[MAXN], used[MAXN]; int Index; int bridge; void addedge(int u, int v) { edge[tot].to = v; edge[tot].next = head[u]; head[u] = tot++; } void Tarjan(int u, int pre) { int v; Low[u] = DFN[u] = ++Index; for (int i = head[u]; i != -1; i = edge[i].next) { v = edge[i].to; if (v == pre) continue; if (!DFN[v]) { Tarjan(v, u); if (Low[u] > Low[v]) Low[u] = Low[v]; if (Low[v] > DFN[u]) bridge++; } else if (Low[u] > DFN[v]) Low[u] = DFN[v]; } } void init() { memset(head, -1, sizeof(head)); memset(DFN, 0, sizeof(DFN)); memset(Low, 0, sizeof(Low)); Index = tot = 0; bridge = 0; } void solve(int N) { for (int i = 1; i <= N; i++) if (!DFN[i]) { Tarjan(i, i); bridge++; } if (bridge == 1) { printf("0\n"); } else { memset(used, 0, sizeof(used)); memset(dg, 0, sizeof(dg)); for (int u = 1; u <= N; u++) { if (head[u] == -1) { used[Low[u]] = 1; continue; } for (int i = head[u]; i != -1; i = edge[i].next) { int v = edge[i].to; used[Low[u]] = used[Low[v]] = 1; if (Low[u] != Low[v]) { dg[Low[u]]++; } } } int ans = 0; for (int u = 1; u <= N; u++) { if (used[u] && dg[u] == 0) ans += 2; else if (dg[u] == 1) ans++; } ans = (ans + 1) / 2; printf("%d\n", ans); } } int main() { int n, m; while (scanf("%d%d", &n, &m) != EOF) { init(); int u, v; while (m--) { scanf("%d%d", &u, &v); addedge(u, v); addedge(v, u); } solve(n); } return 0; }