【题目链接】
http://poj.org/problem?id=2891
【算法】
exgcd
【代码】
#include <algorithm> #include <bitset> #include <cctype> #include <cerrno> #include <clocale> #include <cmath> #include <complex> #include <cstdio> #include <cstdlib> #include <cstring> #include <ctime> #include <deque> #include <exception> #include <fstream> #include <functional> #include <limits> #include <list> #include <map> #include <iomanip> #include <ios> #include <iosfwd> #include <iostream> #include <istream> #include <ostream> #include <queue> #include <set> #include <sstream> #include <stdexcept> #include <streambuf> #include <string> #include <utility> #include <vector> #include <cwchar> #include <cwctype> #include <stack> #include <limits.h> using namespace std; typedef long long ll; int i,k; ll a[100010],m[100010]; inline ll exgcd(ll a,ll b,ll &x,ll &y) { ll g; if (b == 0) { x = 1; y = 0; return a; } else { g = exgcd(b,a%b,y,x); y -= a / b * x; return g; } } inline ll solve() { int i; ll g,x,y,M = a[1],R = m[1]; for (i = 2; i <= k; i++) { g = exgcd(M,a[i],x,y); if ((R - m[i]) % g != 0) return -1; x = (R - m[i]) / g * x % a[i]; R -= x * M; M = M / g * a[i]; R %= M; } return (R % M + M) % M; } int main() { while (scanf("%d",&k) != EOF) { for (i = 1; i <= k; i++) scanf("%lld%lld",&a[i],&m[i]); printf("%lld\n",solve()); } return 0; }