The gradient descent equation itself is generally the same form; we just have to repeat it for our 'n' features:
In other words:
The following image compares gradient descent with one variable to gradient descent with multiple variables:
文章标签 [Machine Learning] 文章分类 代码人生
The gradient descent equation itself is generally the same form; we just have to repeat it for our 'n' features:
In other words:
The following image compares gradient descent with one variable to gradient descent with multiple variables:
上一篇:[Machine Learning] Polynomial Regression
下一篇:[Machine Learning] Gradient Descent in Practice I - Feature Scaling
梯度下降公式推导 向量化
文章目录
说明:以下内容为学习刘建平老师的博客所做的笔记 梯度下降(Gradient Descent)小结www.cnblogs.com 因为个人比较喜欢知乎文章的编辑方式,就在这里边记笔记边学习,喜欢这个博客的朋友,可以去刘建平老师的博客follow,老师的github链接: ljpzzz/machinelearninggithub.com 梯度下降法是与最小二乘法并驾齐
举报文章
请选择举报类型
补充说明
0/200
上传截图
格式支持JPEG/PNG/JPG,图片不超过1.9M