JMH(Java Microbenchmark Harness)

官方地址:​​http://openjdk.java.net/projects/code-tools/jmh/ ​

添加依赖,官方地址:​​https://mvnrepository.com/artifact/org.openjdk.jmh/jmh-core​



<!-- https://mvnrepository.com/artifact/org.openjdk.jmh/jmh-core -->
<dependency>
<groupId>org.openjdk.jmh</groupId>
<artifactId>jmh-core</artifactId>
<version>1.21</version>
</dependency>


添加依赖,官方地址:​​https://mvnrepository.com/artifact/org.openjdk.jmh/jmh-generator-annprocess​



<!-- https://mvnrepository.com/artifact/org.openjdk.jmh/jmh-generator-annprocess -->
<dependency>
<groupId>org.openjdk.jmh</groupId>
<artifactId>jmh-generator-annprocess</artifactId>
<version>1.21</version>
<scope>test</scope>
</dependency>


IDEA安装JMH插件和配置

JMH和Disrupter_github

允许JMH对注解进行处理

JMH和Disrupter_线程阻塞_02

添加注解测试



public class Test{
@Benchmark
@Warmup(iterations = 1, time = 3)
@Fork(5)
@BenchmarkMode(Mode.Throughput)
@Measurement(Iterations = 1, time = 3)
public void testCode(){
// coding
}
}


  • benchmark

指定测试哪段代码

  • warmup

预热,由于JVM中对于特定代码会存在优化(本地化),预热对于测试结果很重要

  • fork

指定线程数

  • benchmarkmode

基准测试的模式

  • measurement

总共执行多少次

Disruptor

官方地址:​​http://lmax-exchange.github.io/disruptor/​


github地址:​​https://github.com/LMAX-Exchange/disruptor​

特点

对比ConcurrentLinkedQueue

  • 链表实现

JDK中没有ConcurrentArrayQueue

Disruptor是数组实现的

  • 无锁,高并发,使用环形Buffer,直接覆盖(不用清除)旧的数据,降低GC频率
  • 实现了基于事件的生产者消费者模式(观察者模式)

RingBuffer

  • 环形队列
  • RingBuffer的序号,指向下一个可用的元素

采用数组实现,没有首尾指针

对比ConcurrentLinkedQueue,用数组实现的速度更快

JMH和Disrupter_github_03

假如长度为8,当添加到第12个元素的时候在哪个序号上呢?用12%8决定


当Buffer被填满的时候到底是覆盖还是等待,由Producer决定


长度设为2的n次幂,利于二进制计算,例如:12%8 = 12 & (8 - 1)  pos = num & (size -1)

Disruptor开发步骤

定义Event - 队列中需要处理的元素

定义Event工厂,用于填充队列

  • 效率:disruptor初始化的时候,会调用Event工厂,对ringBuffer进行内存的提前分配
  • GC频率会降低

定义EventHandler(消费者),处理容器中的元素

事件发布模板



long sequence = ringBuffer.next();  // Grab the next sequence
try {
LongEvent event = ringBuffer.get(sequence); // Get the entry in the Disruptor
// for the sequence
event.set(8888L); // Fill with data
} finally {
ringBuffer.publish(sequence);
}


使用EventTranslator发布事件



EventTranslator<LongEvent> translator1 = new EventTranslator<LongEvent>() {
@Override
public void translateTo(LongEvent event, long sequence) {
event.set(8888L);
}
};

ringBuffer.publishEvent(translator1);

//===============================================================
EventTranslatorOneArg<LongEvent, Long> translator2 = new EventTranslatorOneArg<LongEvent, Long>() {
@Override
public void translateTo(LongEvent event, long sequence, Long l) {
event.set(l);
}
};

ringBuffer.publishEvent(translator2, 7777L);

//===============================================================
EventTranslatorTwoArg<LongEvent, Long, Long> translator3 = new EventTranslatorTwoArg<LongEvent, Long, Long>() {
@Override
public void translateTo(LongEvent event, long sequence, Long l1, Long l2) {
event.set(l1 + l2);
}
};

ringBuffer.publishEvent(translator3, 10000L, 10000L);

//===============================================================
EventTranslatorThreeArg<LongEvent, Long, Long, Long> translator4 = new EventTranslatorThreeArg<LongEvent, Long, Long, Long>() {
@Override
public void translateTo(LongEvent event, long sequence, Long l1, Long l2, Long l3) {
event.set(l1 + l2 + l3);
}
};

ringBuffer.publishEvent(translator4, 10000L, 10000L, 1000L);

//===============================================================
EventTranslatorVararg<LongEvent> translator5 = new EventTranslatorVararg<LongEvent>() {

@Override
public void translateTo(LongEvent event, long sequence, Object... objects) {
long result = 0;
for(Object o : objects) {
long l = (Long)o;
result += l;
}
event.set(result);
}
};

ringBuffer.publishEvent(translator5, 10000L, 10000L, 10000L, 10000L);


使用Lamda表达式



package com.test.disruptor;

import com.lmax.disruptor.RingBuffer;
import com.lmax.disruptor.dsl.Disruptor;
import com.lmax.disruptor.util.DaemonThreadFactory;

public class Main03
{
public static void main(String[] args) throws Exception
{
// Specify the size of the ring buffer, must be power of 2.
int bufferSize = 1024;

// Construct the Disruptor
Disruptor<LongEvent> disruptor = new Disruptor<>(LongEvent::new, bufferSize, DaemonThreadFactory.INSTANCE);

// Connect the handler
disruptor.handleEventsWith((event, sequence, endOfBatch) -> System.out.println("Event: " + event));

// Start the Disruptor, starts all threads running
disruptor.start();

// Get the ring buffer from the Disruptor to be used for publishing.
RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();


ringBuffer.publishEvent((event, sequence) -> event.set(10000L));

System.in.read();
}
}


ProducerType生产者线程模式

ProducerType有两种模式

  • Producer.MULTI,默认,表示在多线程模式下产生sequence
  • Producer.SINGLE

如果确认是单线程生产者,那么可以指定SINGLE,效率会提升

如果是多个生产者(多线程),但模式指定为SINGLE,会出问题

等待策略

  • BlockingWaitStrategy:通过线程阻塞的方式,等待生产者唤醒,被唤醒后,再循环检查依赖的sequence是否已经消费
  • BusySpinWaitStrategy:线程一直自旋等待,可能比较耗cpu
  • LiteBlockingWaitStrategy:线程阻塞等待生产者唤醒,与BlockingWaitStrategy相比,区别在signalNeeded.getAndSet
  • 如果两个线程同时访问,一个访问waitfor,一个访问signalAll时,可以减少lock加锁次数
  • LiteTimeoutBlockingWaitStrategy:与LiteBlockingWaitStrategy相比,设置了阻塞时间,超过时间后抛异常
  • PhasedBackoffWaitStrategy:根据时间参数和传入的等待策略来决定使用哪种等待策略
  • TimeoutBlockingWaitStrategy:相对于BlockingWaitStrategy来说,设置了等待时间,超过后抛异常
  • YieldingWaitStrategy:尝试100次,然后Thread.yield()让出cpu
  • SleepingWaitStrategy:sleep

消费者异常处理

  • 默认,disruptor.setDefaultExceptionHandler()
  • 覆盖,disruptor.handleExceptionFor().with()


论读书


睁开眼,书在面前 闭上眼,书在心里