cv2.calcHist()可以帮助我们统计像素并得到直方图.
格式:
calcHist(images, channels, mask, histSize, ranges, hist=None, accumulate=None)
1
参数:
images: 输入图像
channels: 颜色通道
mask: 掩模
histSize: bin 的数目, 用中括号括起来
ranges: 像素范围 [0, 256]
import cv2
from matplotlib import pyplot as plt
plt.style.use("fivethirtyeight")
# 读取图片, 并转换成灰度图
img = cv2.imread("girl.png", 0)
# 获取直方图
hist = cv2.calcHist([img], [0], None, [256], [0, 256])
print(hist)
# 直方图展示
plt.figure(figsize=(12, 6))
plt.plot(hist)
plt.title("hist of image")
plt.show()
RGB 三通道直方图
import cv2
from matplotlib import pyplot as plt
import cv2
from matplotlib import pyplot as plt
plt.style.use("fivethirtyeight")
plt.figure(figsize=(12, 6))
# 读取图片
img = cv2.imread("girl.png")
# 颜色通道
color = ["b", "g", "r"]
# 获取直方图
for i, c in enumerate(color):
hist = cv2.calcHist([img], [i], None, [256], [0, 256])
plt.plot(hist, color=c)
# 直方图展示
plt.legend(["B Channel", "G Channel", "R Channel"])
plt.title("RGB hist of image")
plt.show()
直方图 + mask
import numpy as np
import cv2
from matplotlib import pyplot as plt
plt.style.use("fivethirtyeight")
# 读取图片, 并转换成灰度图
img = cv2.imread("girl.png", 0)
# 创建mask
mask = np.zeros(img.shape, np.uint8)
mask[280:1000, 420:1500] = 255
# 获取mask后的图像
masked_img = cv2.bitwise_and(img, img, mask=mask)
# 直方图
hist_full = cv2.calcHist([img], [0], None, [256], [0, 256])
hist_mask = cv2.calcHist([img], [0], mask, [256], [0, 256])
# 图片展示
f, ax = plt.subplots(2, 2, figsize=(12, 9))
ax[0, 0].imshow(img, 'gray')
ax[0, 0].set_title("original image")
ax[0, 1].imshow(mask, 'gray')
ax[0, 1].set_title("mask")
ax[1, 0].imshow(masked_img, 'gray')
ax[1, 0].set_title("masked image")
ax[1, 1].plot(hist_full)
ax[1, 1].plot(hist_mask)
ax[1, 1].set_title("original vs masked hist")
plt.show()
直方图均衡化
直方图均衡化 (Histogram Equalization) 是一种增强图片对比度的方法. 将一副图像的直方图分布变成近似均匀分布.
格式:
cv2.equalizeHist(src, dst=None)
import cv2
from matplotlib import pyplot as plt
plt.style.use("fivethirtyeight")
# 读取图片, 并转换成灰度图
img = cv2.imread("girl.png", 0)
# 均衡化
img_equ = cv2.equalizeHist(img)
# 直方图
f, ax = plt.subplots(2, 2, figsize=(16, 16))
ax[0, 0].imshow(img, "gray")
ax[0, 0].set_title("before")
ax[0, 1].imshow(img_equ, "gray")
ax[0, 1].set_title("after")
ax[1, 0].hist(img.ravel(), 256)
ax[1, 1].hist(img_equ.ravel(), 256)
plt.show()
模板匹配
模板匹配 (Template Matching) 和卷积的原理很像. 模板在原图像上从原点开始滑动, 计算模板与图片被模板覆盖的地方的差别程度
cv2.matchTemplate(image, templ, method, result=None, mask=None)
1
参数:
image: 输入图像
templ: 输入模板
method: 方法
TM_SQDIFF: 计算平方差, 计算出来的值越小, 越相关
TM_CCORR: 计算相关性, 计算出来的值越大, 越相关
TM_CCOEFF: 计算相关系数, 计算出来的值越大, 越相关
TM_SQDIFF_NORMED: 计算归一化平方不同, 计算出来的值越接近 0, 越相关
TM_CCORR_NORMED: 计算归一化相关性, 计算出来的值越接近 1, 越相关
TM_CCOEFF_NORMED: 计算归一化系数, 计算出来的值越接近 1, 越相关
import cv2
from matplotlib import pyplot as plt
# 读取图片
img = cv2.imread("cat.png", 0)
# 读取模板
template = cv2.imread("dog.png", 0)
h, w = template.shape
# 模式
methods = ['cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED', 'cv2.TM_CCORR',
'cv2.TM_CCORR_NORMED', 'cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED']
# 循环
for meth in methods:
img2 = img.copy()
# 匹配方法的真值
method = eval(meth)
print("method:", method)
res = cv2.matchTemplate(img, template, method)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
# 如果是平方差匹配TM_SQDIFF或归一化平方差匹配TM_SQDIFF_NORMED,取最小值
if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
top_left = min_loc
else:
top_left = max_loc
bottom_right = (top_left[0] + w, top_left[1] + h)
# 画矩形
cv2.rectangle(img2, top_left, bottom_right, 255, 2)
# 展示
f, ax = plt.subplots(1, 2, figsize=(16, 8))
ax[0].imshow(img2, cmap='gray')
ax[1].imshow(res, cmap='gray')
plt.suptitle(meth)
plt.show()