1 /*
2 矩阵快速幂:求第n项的Fibonacci数,转置矩阵都给出,套个模板就可以了。效率很高啊
3 */
4 #include <cstdio>
5 #include <algorithm>
6 #include <cstring>
7 #include <cmath>
8 using namespace std;
9
10 const int MAXN = 1e3 + 10;
11 const int INF = 0x3f3f3f3f;
12 const int MOD = 10000;
13 struct Mat {
14 int m[2][2];
15 };
16
17 Mat multi_mod(Mat a, Mat b) {
18 Mat ret; memset (ret.m, 0, sizeof (ret.m));
19 for (int i=0; i<2; ++i) {
20 for (int j=0; j<2; ++j) {
21 for (int k=0; k<2; ++k) {
22 ret.m[i][j] = (ret.m[i][j] + a.m[i][k] * b.m[k][j]) % MOD;
23 }
24 }
25 }
26 return ret;
27 }
28
29 int matrix_pow_mod(Mat x, int n) {
30 Mat ret; ret.m[0][0] = ret.m[1][1] = 1; ret.m[0][1] = ret.m[1][0] = 0;
31 while (n) {
32 if (n & 1) ret = multi_mod (ret, x);
33 x = multi_mod (x, x);
34 n >>= 1;
35 }
36 return ret.m[0][1];
37 }
38
39 int main(void) { //POJ 3070 Fibonacci
40 int n;
41 while (scanf ("%d", &n) == 1) {
42 if (n == -1) break;
43 Mat x;
44 x.m[0][0] = x.m[0][1] = x.m[1][0] = 1; x.m[1][1] = 0;
45 printf ("%d\n", matrix_pow_mod (x, n));
46 }
47
48 return 0;
49 }