题目链接:

abs

Time Limit: 2000/1000 MS (Java/Others)   

 Memory Limit: 131072/131072 K (Java/Others)


Problem Description
Given a number x, ask positive integer y2, that satisfy the following conditions:
1. The absolute value of y - x is minimal
2. To prime factors decomposition of Y, every element factor appears two times exactly.
 

 

Input
The first line of input is an integer T ( 1T50)
For each test case,the single line contains, an integer x ( 1x1018)
 

 

Output
For each testcase print the absolute value of y - x
 

 

Sample Input
 
5
1112
4290
8716
9957
9095
 

 

Sample Output
 
23
65
67
244
70
 
题意:
 
给一个x,然后让你找一个y,分解质因子后y的质因子次幂均为2,使abs(y-x)最小;
 
思路:
 
枚举x周围的那些数,看是否符合条件然后更新答案就好了;
 
AC代码:
 
/************************************************ 
┆  ┏┓   ┏┓ ┆    
┆┏┛┻━━━┛┻┓ ┆ 
┆┃       ┃ ┆ 
┆┃   ━   ┃ ┆ 
┆┃ ┳┛ ┗┳ ┃ ┆ 
┆┃       ┃ ┆  
┆┃   ┻   ┃ ┆ 
┆┗━┓    ┏━┛ ┆ 
┆  ┃    ┃  ┆       
┆  ┃    ┗━━━┓ ┆ 
┆  ┃  AC代马   ┣┓┆ 
┆  ┃           ┏┛┆ 
┆  ┗┓┓┏━┳┓┏┛ ┆ 
┆   ┃┫┫ ┃┫┫ ┆ 
┆   ┗┻┛ ┗┻┛ ┆       
************************************************ */  


#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack>

using namespace std;

#define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss));

typedef  long long LL;

template<class T> void read(T&num) {
    char CH; bool F=false;
    for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
    for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
    F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
    if(!p) { puts("0"); return; }
    while(p) stk[++ tp] = p%10, p/=10;
    while(tp) putchar(stk[tp--] + '0');
    putchar('\n');
}

const LL mod=1e9+7;
const double PI=acos(-1.0);
const LL inf=1e18;
const int N=1e5+10;
const int maxn=1e5+4;
const double eps=1e-8;

int cnt,vis[N],prime[N];
inline void Init()
{
    cnt=0;
    For(i,2,maxn)
    {
        if(!vis[i])
        {
            for(int j=2*i;j<maxn;j+=i)
                vis[j]=1;
            prime[++cnt]=i;
        }
    }
}

inline int check(LL  x)
{
    for(int i=1;i<=cnt;i++)
    {
        if(x<prime[i])break;
        if(x%prime[i]==0)
        {
            x=x/prime[i];
            if(x%prime[i]==0)return 0;
        }
    }
    return 1;
}

int main()
{       
        int t;
        read(t);
        Init();
        while(t--)
        {
            LL n;
            read(n);
            LL temp=sqrt(n+0.5),ans=inf;
            int flag=0;
            for(LL i=0; ;i++)
            {
                if(check(temp+i)&&(temp+i)*(temp+i)>=2){ans=min(ans,abs((temp+i)*(temp+i)-n));flag=1;}
                if(check(temp-i)&&temp>i&&(temp-i)*(temp-i)>=2)ans=min(ans,abs((temp-i)*(temp-i)-n)),flag=1;
                if(flag&&i>=6)break;
            }
            cout<<ans<<"\n";
        }
        return 0;
}