Problem Description
Rompire is a robot kingdom and a lot of robots live there peacefully. But one day, the king of Rompire was captured by human beings. His thinking circuit was changed by human and thus became a tyrant. All those who are against him were put into jail, including our clever Micheal#1. Now it’s time to escape, but Micheal#1 needs an optimal plan and he contacts you, one of his human friends, for help.
The jail area is a rectangle contains n×m little grids, each grid might be one of the following: 
1) Empty area, represented by a capital letter ‘S’. 
2) The starting position of Micheal#1, represented by a capital letter ‘F’. 
3) Energy pool, represented by a capital letter ‘G’. When entering an energy pool, Micheal#1 can use it to charge his battery ONLY ONCE. After the charging, Micheal#1’s battery will become FULL and the energy pool will become an empty area. Of course, passing an energy pool without using it is allowed.
4) Laser sensor, represented by a capital letter ‘D’. Since it is extremely sensitive, Micheal#1 cannot step into a grid with a laser sensor. 
5) Power switch, represented by a capital letter ‘Y’. Once Micheal#1 steps into a grid with a Power switch, he will certainly turn it off. 

In order to escape from the jail, Micheal#1 need to turn off all the power switches to stop the electric web on the roof—then he can just fly away. Moving to an adjacent grid (directly up, down, left or right) will cost 1 unit of energy and only moving operation costs energy. Of course, Micheal#1 cannot move when his battery contains no energy. 

The larger the battery is, the more energy it can save. But larger battery means more weight and higher probability of being found by the weight sensor. So Micheal#1 needs to make his battery as small as possible, and still large enough to hold all energy he need. Assuming that the size of the battery equals to maximum units of energy that can be saved in the battery, and Micheal#1 is fully charged at the beginning, Please tell him the minimum size of the battery needed for his Prison break.
 

 

 

Input
Input contains multiple test cases, ended by 0 0. For each test case, the first line contains two integer numbers n and m showing the size of the jail. Next n lines consist of m capital letters each, which stands for the description of the jail.You can assume that 1<=n,m<=15, and the sum of energy pools and power switches is less than 15.

 

 

 

Output
For each test case, output one integer in a line, representing the minimum size of the battery Micheal#1 needs. If Micheal#1 can’t escape, output -1.

 

 

 

Sample Input
5 5
GDDSS
SSSFS
SYGYS
SGSYS
SSYSS
0 0

 

 

 

Sample Output
4

 

 

 

Source
 

 状态压缩dp+bfs

hdu 3681 Prison Break(状态压缩+bfs)_ioshdu 3681 Prison Break(状态压缩+bfs)_i++_02
  1 #pragma comment(linker, "/STACK:1024000000,1024000000")
  2 #include<iostream>
  3 #include<cstdio>
  4 #include<cstring>
  5 #include<cmath>
  6 #include<math.h>
  7 #include<algorithm>
  8 #include<queue>
  9 #include<set>
 10 #include<bitset>
 11 #include<map>
 12 #include<vector>
 13 #include<stdlib.h>
 14 #include <stack>
 15 using namespace std;
 16 int dirx[]={0,0,-1,1};
 17 int diry[]={-1,1,0,0};
 18 #define PI acos(-1.0)
 19 #define max(a,b) (a) > (b) ? (a) : (b)  
 20 #define min(a,b) (a) < (b) ? (a) : (b)
 21 #define ll long long
 22 #define eps 1e-10
 23 #define MOD 1000000007
 24 #define N 17
 25 #define inf 1e12
 26 int n,m;
 27 char mp[N][N];
 28 int states;
 29 int final_state;//要达到的目标状态 
 30 int start;
 31 int dis[N][N][N][N];
 32 int dp[1<<N][N];
 33 
 34 struct Node{
 35     int x,y;
 36 }node[N*N];
 37 void bfs(int st){//每一点和其他点的最短距离 
 38     int x=node[st].x;
 39     int y=node[st].y;
 40     queue<Node>q;
 41     q.push(node[st]);
 42     dis[x][y][x][y]=0;
 43     Node t1,t2;
 44     while(!q.empty()){
 45         t1=q.front();
 46         q.pop();
 47         for(int i=0;i<4;i++){
 48             //t2=t1;
 49             t2.x=t1.x+dirx[i];
 50             t2.y=t1.y+diry[i];
 51             if(t2.x<0 || t2.x>=n || t2.y<0 || t2.y>=m) continue;
 52             if(mp[t2.x][t2.y]=='D') continue;
 53             if(dis[x][y][t2.x][t2.y]!=-1) continue;
 54             dis[x][y][t2.x][t2.y]=dis[x][y][t1.x][t1.y]+1;
 55             q.push(t2);
 56         }
 57     }
 58 }
 59 bool DP(int limit){
 60     memset(dp,-1,sizeof(dp));
 61     dp[(1<<start)][start]=limit;
 62     int res=-1;
 63     for(int i=0;i<(1<<states);i++){
 64         for(int j=0;j<states;j++){
 65             if((i&(1<<j))==0)continue;
 66             if(dp[i][j]==-1) continue;
 67             if((i&(final_state))==final_state){
 68                 res=max(res,dp[i][j]);
 69             }
 70             
 71             for(int k=0;k<states;k++){
 72                 if((i&(1<<k))!=0) continue;
 73                 if(dis[node[j].x][node[j].y][node[k].x][node[k].y]==-1) continue;
 74                 if(j==k) continue;
 75                 if(dp[i][j]<dis[node[j].x][node[j].y][node[k].x][node[k].y]) continue;
 76                 dp[i|(1<<k)][k]=max(dp[i|(1<<k)][k],dp[i][j]-dis[node[j].x][node[j].y][node[k].x][node[k].y]);
 77                 if(mp[node[k].x][node[k].y]=='G') dp[i|(1<<k)][k]=limit;
 78             }
 79             
 80         }
 81     }
 82     return res>=0;
 83     
 84 }
 85 int main()
 86 {
 87     while(scanf("%d%d",&n,&m)==2){
 88         if(n==0 && m==0){
 89             break;
 90         }
 91         states=0;
 92         final_state=0;
 93         for(int i=0;i<n;i++){
 94             scanf("%s",mp[i]);
 95             for(int j=0;j<m;j++){
 96                 if(mp[i][j]=='F'){
 97                     node[states].x=i;
 98                     node[states].y=j;
 99                     start=states;
100                     final_state+=(1<<states);
101                     states++;
102                 }
103                 else if(mp[i][j]=='Y'){
104                     node[states].x=i;
105                     node[states].y=j;
106                     final_state+=(1<<states);
107                     states++;
108                 }
109                 else if(mp[i][j]=='G'){
110                     node[states].x=i;
111                     node[states].y=j;
112                     states++;
113                 }
114             }
115         }
116         
117         memset(dis,-1,sizeof(dis));
118         for(int i=0;i<states;i++){
119             bfs(i);
120         }//两两之间的最短距离已求出,保存于dis 
121         
122          int low=0;
123          int high=300;
124          int ans=-1;
125          while(low<=high){
126              int mid=(low+high)>>1;
127              if(DP(mid)){
128                  ans=mid;
129                  high=mid-1;
130              }
131              else{
132                  low=mid+1;
133              }
134          }
135          printf("%d\n",ans);
136         
137     }
138     return 0;
139 }
View Code

 

TLE代码,想不通

hdu 3681 Prison Break(状态压缩+bfs)_ioshdu 3681 Prison Break(状态压缩+bfs)_i++_02
  1 #pragma comment(linker, "/STACK:1024000000,1024000000")
  2 #include<iostream>
  3 #include<cstdio>
  4 #include<cstring>
  5 #include<cmath>
  6 #include<math.h>
  7 #include<algorithm>
  8 #include<queue>
  9 #include<set>
 10 #include<bitset>
 11 #include<map>
 12 #include<vector>
 13 #include<stdlib.h>
 14 #include <stack>
 15 using namespace std;
 16 int dirx[]={0,0,-1,1};
 17 int diry[]={-1,1,0,0};
 18 #define PI acos(-1.0)
 19 #define max(a,b) (a) > (b) ? (a) : (b)  
 20 #define min(a,b) (a) < (b) ? (a) : (b)
 21 #define ll long long
 22 #define eps 1e-10
 23 #define MOD 1000000007
 24 #define N 17
 25 #define inf 1e12
 26 int n,m;
 27 char mp[N][N];
 28 int states;
 29 int final_state;//要达到的目标状态 
 30 int start;
 31 int dis[N][N][N][N];
 32 int dp[1<<N][N];
 33 int vis[N];
 34 
 35 struct Node{
 36     int x,y;
 37 }node[N*N];
 38 void bfs(int st){//每一点和其他点的最短距离 
 39     int x=node[st].x;
 40     int y=node[st].y;
 41     queue<Node>q;
 42     q.push(node[st]);
 43     dis[x][y][x][y]=0;
 44     Node t1,t2;
 45     while(!q.empty()){
 46         t1=q.front();
 47         q.pop();
 48         for(int i=0;i<4;i++){
 49             //t2=t1;
 50             t2.x=t1.x+dirx[i];
 51             t2.y=t1.y+diry[i];
 52             if(t2.x<0 || t2.x>=n || t2.y<0 || t2.y>=m) continue;
 53             if(mp[t2.x][t2.y]=='D') continue;
 54             if(dis[x][y][t2.x][t2.y]!=-1) continue;
 55             dis[x][y][t2.x][t2.y]=dis[x][y][t1.x][t1.y]+1;
 56             q.push(t2);
 57         }
 58     }
 59 }
 60 /*bool DP(int limit){
 61     memset(dp,-1,sizeof(dp));
 62     dp[(1<<start)][start]=limit;
 63     int res=-1;
 64     for(int i=0;i<(1<<states);i++){
 65         for(int j=0;j<states;j++){
 66             if((i&(1<<j))==0)continue;
 67             if(dp[i][j]==-1) continue;
 68             if((i&(final_state))==final_state){
 69                 res=max(res,dp[i][j]);
 70             }
 71             
 72             for(int k=0;k<states;k++){
 73                 if((i&(1<<k))!=0) continue;
 74                 if(dis[node[j].x][node[j].y][node[k].x][node[k].y]==-1) continue;
 75                 if(j==k) continue;
 76                 if(dp[i][j]<dis[node[j].x][node[j].y][node[k].x][node[k].y]) continue;
 77                 dp[i|(1<<k)][k]=max(dp[i|(1<<k)][k],dp[i][j]-dis[node[j].x][node[j].y][node[k].x][node[k].y]);
 78                 if(mp[node[k].x][node[k].y]=='G') dp[i|(1<<k)][k]=limit;
 79             }
 80             
 81         }
 82     }
 83     return res>=0;
 84     
 85 }
 86 */
 87 
 88 bool dfs(int st,int sta,int limit,int mid){
 89     
 90     //if(limit<0) return false;
 91     
 92     
 93     if( (sta & final_state) == final_state){
 94         return true;
 95     }
 96     
 97     for(int i=0;i<states;i++){
 98         if(dis[node[st].x][node[st].y][node[i].x][node[i].y]==-1) continue;
 99             if(vis[i] || limit<dis[node[st].x][node[st].y][node[i].x][node[i].y]) continue;
100             
101             if(mp[node[i].x][node[i].y]=='G'){
102                  vis[i]=1;
103                  if(dfs(i,sta|(1<<i),mid,mid)){
104                      return true;
105                  }
106                  vis[i]=0;
107              }
108             else{
109                 vis[i]=1;
110                 if(dfs(i,sta|(1<<i),limit-dis[node[st].x][node[st].y][node[i].x][node[i].y],mid)){
111                     return true;
112                 }
113                 vis[i]=0;
114              }
115     
116     }
117     return false;
118     
119 }
120 int main()
121 {
122     while(scanf("%d%d",&n,&m)==2){
123         if(n==0 && m==0){
124             break;
125         }
126         states=0;
127         final_state=0;
128         for(int i=0;i<n;i++){
129             scanf("%s",mp[i]);
130             for(int j=0;j<m;j++){
131                 if(mp[i][j]=='F'){
132                     node[states].x=i;
133                     node[states].y=j;
134                     start=states;
135                     final_state+=(1<<states);
136                     states++;
137                 }
138                 else if(mp[i][j]=='Y'){
139                     node[states].x=i;
140                     node[states].y=j;
141                     final_state+=(1<<states);
142                     states++;
143                 }
144                 else if(mp[i][j]=='G'){
145                     node[states].x=i;
146                     node[states].y=j;
147                     states++;
148                 }
149             }
150         }
151         
152         memset(dis,-1,sizeof(dis));
153         for(int i=0;i<states;i++){
154             bfs(i);
155         }//两两之间的最短距离已求出,保存于dis 
156         
157          int low=0;
158          int high=300;
159          int ans=-1;
160          while(low<=high){
161              int mid=(low+high)>>1;
162              memset(vis,0,sizeof(vis));
163              vis[start]=1;
164              if(dfs(start,1<<start,mid,mid)){
165                  ans=mid;
166                  high=mid-1;
167              }
168              else{
169                  low=mid+1;
170              }
171          }
172          printf("%d\n",ans);
173         
174     }
175     return 0;
176 }
View Code