You have an array ​​arr​​ of length ​​n​​ where ​​arr[i] = (2 * i) + 1​​ for all valid values of ​​i​​ (i.e. ​​0 <= i < n​​).

In one operation, you can select two indices ​​x​​ and ​​y​​ where ​​0 <= x, y < n​​ and subtract ​​1​​ from ​​arr[x]​​ and add ​​1​​ to ​​arr[y]​​ (i.e. perform ​​arr[x] -=1 ​​and ​​arr[y] += 1​​). The goal is to make all the elements of the array equal. It is guaranteed that all the elements of the array can be made equal using some operations.

Given an integer ​​n​​, the length of the array. Return the minimum number of operations needed to make all the elements of arr equal.

 

Example 1:

Input: n = 3
Output: 2
Explanation: arr = [1, 3, 5]
First operation choose x = 2 and y = 0, this leads arr to be [2, 3, 4]
In the second operation choose x = 2 and y = 0 again, thus arr = [3, 3, 3].


Example 2:

Input: n = 6
Output: 9


 

Constraints:

  • ​1 <= n <= 10^4​


class Solution {
public int minOperations(int n) {
int cnt = n / 2;
return cnt * (cnt + n % 2);
}
}


仔细观察,发现无论是odd 还是 even,每个数组最后都会等于n。

所以从1出发到n,每次加上n - cur



class Solution {
public int minOperations(int n) {
int res = 0;
for(int cur = 1; cur < n; cur+=2) {
res += n - cur;
}
return res;
}
}