版权声明:本文为博主原创文章,未经博主允许不得转载。

目录(?)[-]
应用层怎样使用fork and execve
fork的返回值怎样区分0pid
fork系统调用的入口参数来自哪里
how to implement do_fork
copy_process
How to check the kernel stack correctivity
How to set the new process entry
new process entry point
sys_execve
对elf 格式文件而言
应用层怎样使用fork and execve
/**************************************************************************/

main()
{
int ret_from_fork,mypid;
mypid = getPid();
printf("before:my pid is d%\n",mypid);
ret_from_fork = fork();
/*该方法返回生成的子进程的进程id号。用于复制出一个进程后,他们都运行到同样的地方,
*所以父进程中的ret_from_fork的值是id值,而不时初值0,
*而子进程的ret_from_fork却没有获得值,还是0.通过这样就可以区别两个进程改变两个进程的走向
**/
switch(ret_from_fork){
case -1:
perror(" fork failed");
exit(1);
/*以下就是子进程要执行的代码,他调用exec载入用户输入的命令指定的程序,
*清除进程空间执行用户指定的程序
**/
case 0:
execvp(arglist[0],arglist);//arglist[0]中指定用户想执行的命令名。
perror("execvp failed");
exit(1);

default:
while(wait(&exitstatus)!=ret_from_fork);
/*shell程序,等待子进程运行结束后,再接受用户输入*/
}

}

fork的返回值怎样区分0/pid
/*
*用户空间fork函数调用时,返回的0也不是内核的do_fork返回的,do_fork只会返回新进程的pid,
*而 fork的0返回值是内核在ret_from_fork之后进入用户空间前RESTORE_ALL的时候pop到eax中的,
*然后库实现的fork将 eax作为返回值;
*实际上,fork的子进程在进入用户空间前从来不经过do_fork这条路,可以看看它的thread的eip是 ret_from_fork,
*也就是只要开始运行子进程,就在switch_to中会执行ret_from_fork,而从ret_from_fork顺 着看,
*一直就到了RESTORE_ALL从 而返回用户空间
**/

fork系统调用的入口,参数来自哪里?
入口参数保存在当前的内核栈中:结构为struct pt_regs
系统调用的入口:
arch/arm/kernel/entry-common.S
sys_fork_wrapper:
add r0, sp, #S_OFF
b sys_fork
ENDPROC(sys_fork_wrapper)

crash> dis sys_fork_wrapper
0xc000e800 <sys_fork_wrapper>: add r0, sp, #8
0xc000e804 <sys_fork_wrapper+4>: b 0xc0011d28 <sys_fork>

arch/arm/kernel/sys_arm.c
/* Fork a new task - this creates a new program thread.
* This is called indirectly via a small wrapper
*/
asmlinkage int sys_fork(struct pt_regs *regs)
{
#ifdef CONFIG_MMU
return do_fork(SIGCHLD, regs->ARM_sp, regs, 0, NULL, NULL);
#else
/* can not support in nommu mode */
return(-EINVAL);
#endif
}

crash> dis sys_fork
0xc0011d28 <sys_fork>: mov r12, sp
0xc0011d2c <sys_fork+4>: push {r11, r12, lr, pc}
0xc0011d30 <sys_fork+8>: sub r11, r12, #4
0xc0011d34 <sys_fork+12>: sub sp, sp, #8
0xc0011d38 <sys_fork+16>: mov r12, #0
0xc0011d3c <sys_fork+20>: mov r1, r0
0xc0011d40 <sys_fork+24>: ldr r1, [r1, #52] ; 0x34
0xc0011d44 <sys_fork+28>: mov r2, r0
0xc0011d48 <sys_fork+32>: mov r3, r12
0xc0011d4c <sys_fork+36>: mov r0, #17
0xc0011d50 <sys_fork+40>: str r12, [sp]
0xc0011d54 <sys_fork+44>: str r12, [sp, #4]
0xc0011d58 <sys_fork+48>: bl 0xc0027550 <do_fork>
0xc0011d5c <sys_fork+52>: sub sp, r11, #12
0xc0011d60 <sys_fork+56>: ldm sp, {r11, sp, pc}

/**************************************************************/
/arch/arm/kernel/entry-header.s
@
@ Most of the stack format comes from struct pt_regs, but with
@ the addition of 8 bytes for storing syscall args 5 and 6.
@ This _must_ remain a multiple of 8 for EABI.
@
#define S_OFF 8

/**************************************************************/
/arch/arm/include/asm/ptrace.h
/*
* This struct defines the way the registers are stored on the
* stack during a system call. Note that sizeof(struct pt_regs)
* has to be a multiple of 8.
*/

struct pt_regs {
unsigned long uregs[18];
};


#define ARM_cpsr uregs[16]
#define ARM_pc uregs[15]
#define ARM_lr uregs[14]
#define ARM_sp uregs[13]
#define ARM_ip uregs[12]/*?*/
#define ARM_fp uregs[11]/*frame point*/
#define ARM_r10 uregs[10]
#define ARM_r9 uregs[9]
#define ARM_r8 uregs[8]
#define ARM_r7 uregs[7]
#define ARM_r6 uregs[6]
#define ARM_r5 uregs[5]
#define ARM_r4 uregs[4]
#define ARM_r3 uregs[3]
#define ARM_r2 uregs[2]
#define ARM_r1 uregs[1]
#define ARM_r0 uregs[0]
#define ARM_ORIG_r0 uregs[17]

how to implement do_fork

/**************************************************************/
do_fork(SIGCHLD, regs->ARM_sp, regs, 0, NULL, NULL);
/*
* Ok, this is the main fork-routine.
*
* It copies the process, and if successful kick-starts
* it and waits for it to finish using the VM if required.
*/
long do_fork(unsigned long clone_flags,
unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size,
int __user *parent_tidptr,
int __user *child_tidptr)
{
struct task_struct *p;
int trace = 0;
long nr;

p = copy_process(clone_flags, stack_start, regs, stack_size,
child_tidptr, NULL, trace);

/*
* Do this prior waking up the new thread - the thread pointer
* might get invalid after that point, if the thread exits quickly.
*/
if (!IS_ERR(p)) {
nr = task_pid_vnr(p);
wake_up_new_task(p);
}
return nr;
}

copy_process
/*
* This creates a new process as a copy of the old one,
* but does not actually start it yet.
*
* It copies the registers, and all the appropriate
* parts of the process environment (as per the clone
* flags). The actual kick-off is left to the caller.
*/
static struct task_struct *copy_process(unsigned long clone_flags,
unsigned long stack_start,
struct pt_regs *regs,
unsigned long stack_size,
int __user *child_tidptr,
struct pid *pid,
int trace)
{/*分配了相关结构体的memory;并用原来的赋值*/
struct task_struct *p;
p = dup_task_struct(current);
----
/* Perform scheduler related setup. Assign this task to a CPU. */
sched_fork(p);

retval = perf_event_init_task(p);
if (retval)
goto bad_fork_cleanup_policy;
retval = audit_alloc(p);
if (retval)
goto bad_fork_cleanup_policy;
/* copy all the process information */
retval = copy_semundo(clone_flags, p);
if (retval)
goto bad_fork_cleanup_audit;
retval = copy_files(clone_flags, p);
if (retval)
goto bad_fork_cleanup_semundo;
retval = copy_fs(clone_flags, p);
if (retval)
goto bad_fork_cleanup_files;
retval = copy_sighand(clone_flags, p);
if (retval)
goto bad_fork_cleanup_fs;
retval = copy_signal(clone_flags, p);
if (retval)
goto bad_fork_cleanup_sighand;
retval = copy_mm(clone_flags, p);
if (retval)
goto bad_fork_cleanup_signal;
retval = copy_namespaces(clone_flags, p);
if (retval)
goto bad_fork_cleanup_mm;
retval = copy_io(clone_flags, p);
if (retval)
goto bad_fork_cleanup_namespaces;
retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
}


static struct task_struct *dup_task_struct(struct task_struct *orig)
{
struct task_struct *tsk;
struct thread_info *ti;
unsigned long *stackend;
int node = tsk_fork_get_node(orig);
int err;

/*分配了memory for task_struct and thread_info*/
tsk = alloc_task_struct_node(node);
if (!tsk)
return NULL;

ti = alloc_thread_info_node(tsk, node);
if (!ti) {
free_task_struct(tsk);
return NULL;
}
/*
int arch_dup_task_struct(struct task_struct *dst,
struct task_struct *src)
{
*dst = *src;
return 0;
}
*/
err = arch_dup_task_struct(tsk, orig);
if (err)
goto out;

tsk->stack = ti;

setup_thread_stack(tsk, orig);
clear_user_return_notifier(tsk);
clear_tsk_need_resched(tsk);
stackend = end_of_stack(tsk);
*stackend = STACK_END_MAGIC; /* for overflow detection */


/*
* One for us, one for whoever does the "release_task()" (usually
* parent)
*/
atomic_set(&tsk->usage, 2);

tsk->splice_pipe = NULL;

account_kernel_stack(ti, 1);

return tsk;

out:
free_thread_info(ti);
free_task_struct(tsk);
return NULL;
}

How to check the kernel stack correctivity
static inline unsigned long *end_of_stack(struct task_struct *p)
{
return (unsigned long *)(task_thread_info(p) + 1);
}
#define STACK_END_MAGIC 0x57AC6E9D

COMMAND: "dwc_otg"
TASK: ee1a3420 [THREAD_INFO: ee1c6000]
CPU: 0
STATE: TASK_INTERRUPTIBLE
crash> thread_info ee1c6000
struct thread_info {
flags = 0,
preempt_count = 1,
addr_limit = 0,
task = 0xee1a3420,

crash> struct task_struct.stack 0xee1a3420
stack = 0xee1c6000

crash> bt -r
PID: 760 TASK: ee1a3420 CPU: 0 COMMAND: "dwc_otg"
ee1c6000: 00000000 00000001 00000000 ee1a3420
ee1c6010: default_exec_domain 00000000 00000015 ee1a3420
ee1c6020: c0f88420 init_task ee1c6000 00000000
ee1c6030: 00000001 init_mm ee1c7f5c ee1c7f18
ee1c6040: __schedule+1412 00000000 00000000 00000000
ee1c6050: 00000000 00000000 00000000 00000000
ee1c6060: 00000000 00000000 00000000 00000000
ee1c6070: 00000000 00000000 00000000 00000000
ee1c6080: 00000000 00000000 00000000 00000000
ee1c6090: 00000000 00000000 00000000 00000000
ee1c60a0: 00000000 00000000 00000000 00000000
ee1c60b0: 00000000 00000000 00000000 00000000
ee1c60c0: 00000000 00000000 00000000 00000000
ee1c60d0: 00000000 00000000 00000000 00000000
ee1c60e0: 00000000 00000000 00000000 00000000
ee1c60f0: 00000000 00000000 00000000 00000000
ee1c6100: 00000000 00000000 00000000 00000000
ee1c6110: 00000000 00000000 00000000 00000000
ee1c6120: 00000000 00000000 00000000 00000000
ee1c6130: 00000000 00000000 00000000 00000000
ee1c6140: 00000000 00000000 00000000 00000000
ee1c6150: 00000000 00000000 00000000 00000000
ee1c6160: 00000000 00000000 00000000 00000000
ee1c6170: 00000000 00000000 00000000 00000000
ee1c6180: 00000000 00000000 00000000 00000000
ee1c6190: 00000000 00000000 00000000 00000000
ee1c61a0: 00000000 00000000 00000000 00000000
ee1c61b0: 00000000 00000000 00000000 00000000
ee1c61c0: 00000000 00000000 00000000 00000000
ee1c61d0: 00000000 00000000 00000000 00000000
ee1c61e0: 00000000 00000000 00000000 00000000
ee1c61f0: 00000000 00000000 00000000 00000000
ee1c6200: 00000000 00000000 00000000 00000000
ee1c6210: 00000000 00000000 00000000 00000000
ee1c6220: 00000000 00000000 00000000 00000000
ee1c6230: 00000000 00000000 00000000 00000000
ee1c6240: 00000000 00000000 00000000 00000000
ee1c6250: 00000000 00000000 00000000 00000000
ee1c6260: 00000000 00000000 00000000 00000000
ee1c6270: 00000000 00000000 00000000 00000000
ee1c6280: 00000000 00000000 00000000 00000000
ee1c6290: 00000000 00000000 00000000 00000000
ee1c62a0: 00000000 00000000 00000000 00000000
ee1c62b0: 00000000 00000000 00000000 00000000
ee1c62c0: 00000000 00000000 do_no_restart_syscall 00000000
ee1c62d0: 00000000 00000000 00000000 00000000
ee1c62e0: 00000000 00000000 00000000 00000000
ee1c62f0: 57ac6e9d/*STACK_END_MAGIC*/

asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");

How to set the new process entry
int

copy_thread(unsigned long clone_flags, unsigned long stack_start,
unsigned long stk_sz, struct task_struct *p, struct pt_regs *regs)
{
struct thread_info *thread = task_thread_info(p);
struct pt_regs *childregs = task_pt_regs(p);

*childregs = *regs;
childregs->ARM_r0 = 0;
childregs->ARM_sp = stack_start;

memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
thread->cpu_context.sp = (unsigned long)childregs;
thread->cpu_context.pc = (unsigned long)ret_from_fork;

clear_ptrace_hw_breakpoint(p);

if (clone_flags & CLONE_SETTLS)
thread->tp_value = regs->ARM_r3;

thread_notify(THREAD_NOTIFY_COPY, thread);

return 0;
}

/*8K内核栈的最后是 struct pt_regs
*对它进行赋值:返回到用户空间后使用的栈,返回地址
**/
#define task_pt_regs(p) \
((struct pt_regs *)(THREAD_START_SP + task_stack_page(p)) - 1)


/*
* low level task data that entry.S needs immediate access to.
* __switch_to() assumes cpu_context follows immediately after cpu_domain.
*/
crash> struct thread_info -o
struct thread_info {
[0] unsigned long flags;
[4] int preempt_count;
[8] mm_segment_t addr_limit;
[12] struct task_struct *task;
[16] struct exec_domain *exec_domain;
[20] __u32 cpu;
[24] __u32 cpu_domain;
[28] struct cpu_context_save cpu_context;
[76] __u32 syscall;
[80] __u8 used_cp[16];
[96] unsigned long tp_value;
[100] struct crunch_state crunchstate;
[288] union fp_state fpstate;
[432] union vfp_state vfpstate;
[712] struct restart_block restart_block;
}

new process entry point
/*
* This is how we return from a fork.
*/
ENTRY(ret_from_fork)
bl schedule_tail
get_thread_info tsk
ldr r1, [tsk, #TI_FLAGS] @ check for syscall tracing
mov why, #1
tst r1, #_TIF_SYSCALL_WORK @ are we tracing syscalls?
beq ret_slow_syscall
mov r1, sp
mov r0, #1 @ trace exit [IP = 1]
bl syscall_trace
b ret_slow_syscall
ENDPROC(ret_from_fork)


sys_execve

/**************************************************************/
arch/arm/kernel/sys_arm.c

/* sys_execve() executes a new program.
* This is called indirectly via a small wrapper
*/
asmlinkage int sys_execve(const char __user *filenamei,
const char __user *const __user *argv,
const char __user *const __user *envp, struct pt_regs *regs)
{
int error;
char * filename;

filename = getname(filenamei);
error = PTR_ERR(filename);
if (IS_ERR(filename))
goto out;
error = do_execve(filename, argv, envp, regs);
putname(filename);
out:
return error;
}

int do_execve(const char *filename,
const char __user *const __user *__argv,
const char __user *const __user *__envp,
struct pt_regs *regs)
{
struct user_arg_ptr argv = { .ptr.native = __argv };
struct user_arg_ptr envp = { .ptr.native = __envp };
return do_execve_common(filename, argv, envp, regs);
}

/**************************************************************/

/*
* sys_execve() executes a new program.
*/
static int do_execve_common(const char *filename,
struct user_arg_ptr argv,
struct user_arg_ptr envp,
struct pt_regs *regs)
{
struct linux_binprm *bprm;
struct file *file;
bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
file = open_exec(filename);
sched_exec();

bprm->file = file;
bprm->filename = filename;
bprm->interp = filename;

bprm_mm_init(bprm);

bprm->argc = count(argv, MAX_ARG_STRINGS);

bprm->envc = count(envp, MAX_ARG_STRINGS);
prepare_binprm(bprm);
search_binary_handler(bprm,regs);
}

/*
* Create a new mm_struct and populate it with a temporary stack
* vm_area_struct. We don't have enough context at this point to set the stack
* flags, permissions, and offset, so we use temporary values. We'll update
* them later in setup_arg_pages().
*/
int bprm_mm_init(struct linux_binprm *bprm)
{
int err;
struct mm_struct *mm = NULL;
/*mm_struct*/
bprm->mm = mm = mm_alloc();
/*vma_struct*/
err = __bprm_mm_init(bprm);


return 0;
}

/*
* cycle the list of binary formats handler, until one recognizes the image
*/
int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
{
struct linux_binfmt *fmt;
list_for_each_entry(fmt, &formats, lh)
int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
fn(bprm, regs);
}

对elf 格式文件而言
fs/binfmt_elf.c
static struct linux_binfmt elf_format = {
.module = THIS_MODULE,
.load_binary = load_elf_binary,
.load_shlib = load_elf_library,
.core_dump = elf_core_dump,
.min_coredump = ELF_EXEC_PAGESIZE,
};

static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)
{
----
kernel_read();
start_thread(regs, elf_entry, bprm->p);
}

#define start_thread(regs,pc,sp) \
({ \
unsigned long *stack = (unsigned long *)sp; \
memset(regs->uregs, 0, sizeof(regs->uregs)); \
if (current->personality & ADDR_LIMIT_32BIT) \
regs->ARM_cpsr = USR_MODE; \
else \
regs->ARM_cpsr = USR26_MODE; \
if (elf_hwcap & HWCAP_THUMB && pc & 1) \
regs->ARM_cpsr |= PSR_T_BIT; \
regs->ARM_cpsr |= PSR_ENDSTATE; \
regs->ARM_pc = pc & ~1; /* pc */ \
regs->ARM_sp = sp; /* sp */ \
regs->ARM_r2 = stack[2]; /* r2 (envp) */ \
regs->ARM_r1 = stack[1]; /* r1 (argv) */ \
regs->ARM_r0 = stack[0]; /* r0 (argc) */ \
})

总结:当运行execve时已经运行新创建的进程,不是说在old进程中加载后,再运行新进程的。


 

 



版权声明:本文为博主原创文章,未经博主允许不得转载。


 



目录​​(?)​​​​[-]​

  1. ​应用层怎样使用fork and execve​
  2. ​fork的返回值怎样区分0pid​
  3. ​fork系统调用的入口参数来自哪里​
  4. ​how to implement do_fork​
  1. ​copy_process​
  1. ​How to check the kernel stack correctivity​
  2. ​How to set the new process entry​
  3. ​new process entry point​
  1. ​sys_execve​
  1. ​对elf 格式文件而言​


 



应用层怎样使用fork and execve

/**************************************************************************/

main()

{

    int ret_from_fork,mypid;

    mypid = getPid();

    printf("before:my pid is d%\n",mypid);

    ret_from_fork = fork();

    /*该方法返回生成的子进程的进程id号。用于复制出一个进程后,他们都运行到同样的地方,

     *所以父进程中的ret_from_fork的值是id值,而不时初值0,

     *而子进程的ret_from_fork却没有获得值,还是0.通过这样就可以区别两个进程改变两个进程的走向

         **/

    switch(ret_from_fork){

        case -1:

        perror(" fork failed");

        exit(1);

        /*以下就是子进程要执行的代码,他调用exec载入用户输入的命令指定的程序,

         *清除进程空间执行用户指定的程序

         **/

        case 0:

        execvp(arglist[0],arglist);//arglist[0]中指定用户想执行的命令名。

        perror("execvp failed");

        exit(1);


        default:

        while(wait(&exitstatus)!=ret_from_fork);

        /*shell程序,等待子进程运行结束后,再接受用户输入*/

    }


}

 

fork的返回值怎样区分0/pid

/*

 *用户空间fork函数调用时,返回的0也不是内核的do_fork返回的,do_fork只会返回新进程的pid,

 *而 fork的0返回值是内核在ret_from_fork之后进入用户空间前RESTORE_ALL的时候pop到eax中的,

 *然后库实现的fork将 eax作为返回值;

 *实际上,fork的子进程在进入用户空间前从来不经过do_fork这条路,可以看看它的thread的eip是 ret_from_fork,

 *也就是只要开始运行子进程,就在switch_to中会执行ret_from_fork,而从ret_from_fork顺 着看,

 *一直就到了RESTORE_ALL从 而返回用户空间

**/


fork系统调用的入口,参数来自哪里?

入口参数保存在当前的内核栈中:结构为struct pt_regs

系统调用的入口:

arch/arm/kernel/entry-common.S

sys_fork_wrapper:

    add    r0, sp, #S_OFF

    b    sys_fork

ENDPROC(sys_fork_wrapper)


crash> dis sys_fork_wrapper

0xc000e800 <sys_fork_wrapper>:      add     r0, sp, #8

0xc000e804 <sys_fork_wrapper+4>:        b       0xc0011d28 <sys_fork>


arch/arm/kernel/sys_arm.c

/* Fork a new task - this creates a new program thread.

 * This is called indirectly via a small wrapper

 */

asmlinkage int sys_fork(struct pt_regs *regs)

{

#ifdef CONFIG_MMU

    return do_fork(SIGCHLD, regs->ARM_sp, regs, 0, NULL, NULL);

#else

    /* can not support in nommu mode */

    return(-EINVAL);

#endif

}


crash> dis sys_fork

0xc0011d28 <sys_fork>:  mov     r12, sp

0xc0011d2c <sys_fork+4>:        push    {r11, r12, lr, pc}

0xc0011d30 <sys_fork+8>:        sub     r11, r12, #4

0xc0011d34 <sys_fork+12>:       sub     sp, sp, #8

0xc0011d38 <sys_fork+16>:       mov     r12, #0

0xc0011d3c <sys_fork+20>:       mov     r1, r0

0xc0011d40 <sys_fork+24>:       ldr     r1, [r1, #52]   ; 0x34

0xc0011d44 <sys_fork+28>:       mov     r2, r0

0xc0011d48 <sys_fork+32>:       mov     r3, r12

0xc0011d4c <sys_fork+36>:       mov     r0, #17

0xc0011d50 <sys_fork+40>:       str     r12, [sp]

0xc0011d54 <sys_fork+44>:       str     r12, [sp, #4]

0xc0011d58 <sys_fork+48>:       bl      0xc0027550 <do_fork>

0xc0011d5c <sys_fork+52>:       sub     sp, r11, #12

0xc0011d60 <sys_fork+56>:       ldm     sp, {r11, sp, pc}


/**************************************************************/

/arch/arm/kernel/entry-header.s

@

@ Most of the stack format comes from struct pt_regs, but with

@ the addition of 8 bytes for storing syscall args 5 and 6.

@ This _must_ remain a multiple of 8 for EABI.

@

#define S_OFF        8


/**************************************************************/

/arch/arm/include/asm/ptrace.h

/*

 * This struct defines the way the registers are stored on the

 * stack during a system call.  Note that sizeof(struct pt_regs)

 * has to be a multiple of 8.

 */


struct pt_regs {

    unsigned long uregs[18];

};



#define ARM_cpsr    uregs[16]

#define ARM_pc        uregs[15]

#define ARM_lr        uregs[14]

#define ARM_sp        uregs[13]

#define ARM_ip        uregs[12]/*?*/

#define ARM_fp        uregs[11]/*frame point*/

#define ARM_r10        uregs[10]

#define ARM_r9        uregs[9]

#define ARM_r8        uregs[8]

#define ARM_r7        uregs[7]

#define ARM_r6        uregs[6]

#define ARM_r5        uregs[5]

#define ARM_r4        uregs[4]

#define ARM_r3        uregs[3]

#define ARM_r2        uregs[2]

#define ARM_r1        uregs[1]

#define ARM_r0        uregs[0]

#define ARM_ORIG_r0    uregs[17]

 

how to implement do_fork


/**************************************************************/

do_fork(SIGCHLD, regs->ARM_sp, regs, 0, NULL, NULL);

/*

 *  Ok, this is the main fork-routine.

 *

 * It copies the process, and if successful kick-starts

 * it and waits for it to finish using the VM if required.

 */

long do_fork(unsigned long clone_flags,

          unsigned long stack_start,

          struct pt_regs *regs,

          unsigned long stack_size,

          int __user *parent_tidptr,

          int __user *child_tidptr)

{

    struct task_struct *p;

    int trace = 0;

    long nr;


    p = copy_process(clone_flags, stack_start, regs, stack_size,

             child_tidptr, NULL, trace);


    /*

     * Do this prior waking up the new thread - the thread pointer

     * might get invalid after that point, if the thread exits quickly.

     */

    if (!IS_ERR(p)) {

        nr = task_pid_vnr(p);

        wake_up_new_task(p);

    }

    return nr;

}

 

copy_process

/*

 * This creates a new process as a copy of the old one,

 * but does not actually start it yet.

 *

 * It copies the registers, and all the appropriate

 * parts of the process environment (as per the clone

 * flags). The actual kick-off is left to the caller.

 */

static struct task_struct *copy_process(unsigned long clone_flags,

                    unsigned long stack_start,

                    struct pt_regs *regs,

                    unsigned long stack_size,

                    int __user *child_tidptr,

                    struct pid *pid,

                    int trace)

{/*分配了相关结构体的memory;并用原来的赋值*/

    struct task_struct *p;

    p = dup_task_struct(current);

    ----

    /* Perform scheduler related setup. Assign this task to a CPU. */

    sched_fork(p);


    retval = perf_event_init_task(p);

    if (retval)

        goto bad_fork_cleanup_policy;

    retval = audit_alloc(p);

    if (retval)

        goto bad_fork_cleanup_policy;

    /* copy all the process information */

    retval = copy_semundo(clone_flags, p);

    if (retval)

        goto bad_fork_cleanup_audit;

    retval = copy_files(clone_flags, p);

    if (retval)

        goto bad_fork_cleanup_semundo;

    retval = copy_fs(clone_flags, p);

    if (retval)

        goto bad_fork_cleanup_files;

    retval = copy_sighand(clone_flags, p);

    if (retval)

        goto bad_fork_cleanup_fs;

    retval = copy_signal(clone_flags, p);

    if (retval)

        goto bad_fork_cleanup_sighand;

    retval = copy_mm(clone_flags, p);

    if (retval)

        goto bad_fork_cleanup_signal;

    retval = copy_namespaces(clone_flags, p);

    if (retval)

        goto bad_fork_cleanup_mm;

    retval = copy_io(clone_flags, p);

    if (retval)

        goto bad_fork_cleanup_namespaces;

    retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);

}



static struct task_struct *dup_task_struct(struct task_struct *orig)

{

    struct task_struct *tsk;

    struct thread_info *ti;

    unsigned long *stackend;

    int node = tsk_fork_get_node(orig);

    int err;


    /*分配了memory for task_struct and thread_info*/

    tsk = alloc_task_struct_node(node);

    if (!tsk)

        return NULL;


    ti = alloc_thread_info_node(tsk, node);

    if (!ti) {

        free_task_struct(tsk);

        return NULL;

    }

    /*

    int arch_dup_task_struct(struct task_struct *dst,

              struct task_struct *src)

    {

        *dst = *src;

        return 0;

    }

    */

    err = arch_dup_task_struct(tsk, orig);

    if (err)

        goto out;


    tsk->stack = ti;


    setup_thread_stack(tsk, orig);

    clear_user_return_notifier(tsk);

    clear_tsk_need_resched(tsk);

    stackend = end_of_stack(tsk);

    *stackend = STACK_END_MAGIC;    /* for overflow detection */



    /*

     * One for us, one for whoever does the "release_task()" (usually

     * parent)

     */

    atomic_set(&tsk->usage, 2);


    tsk->splice_pipe = NULL;


    account_kernel_stack(ti, 1);


    return tsk;


out:

    free_thread_info(ti);

    free_task_struct(tsk);

    return NULL;

}

 

How to check the kernel stack correctivity

static inline unsigned long *end_of_stack(struct task_struct *p)

{

    return (unsigned long *)(task_thread_info(p) + 1);

}

#define STACK_END_MAGIC        0x57AC6E9D


COMMAND: "dwc_otg"

   TASK: ee1a3420  [THREAD_INFO: ee1c6000]

    CPU: 0

  STATE: TASK_INTERRUPTIBLE 

crash> thread_info ee1c6000

struct thread_info {

  flags = 0, 

  preempt_count = 1, 

  addr_limit = 0, 

  task = 0xee1a3420,


crash> struct task_struct.stack 0xee1a3420

  stack = 0xee1c6000


crash> bt -r

PID: 760    TASK: ee1a3420  CPU: 0   COMMAND: "dwc_otg"

ee1c6000:  00000000 00000001 00000000 ee1a3420 

ee1c6010:  default_exec_domain 00000000 00000015 ee1a3420 

ee1c6020:  c0f88420 init_task ee1c6000 00000000 

ee1c6030:  00000001 init_mm  ee1c7f5c ee1c7f18 

ee1c6040:  __schedule+1412 00000000 00000000 00000000 

ee1c6050:  00000000 00000000 00000000 00000000 

ee1c6060:  00000000 00000000 00000000 00000000 

ee1c6070:  00000000 00000000 00000000 00000000 

ee1c6080:  00000000 00000000 00000000 00000000 

ee1c6090:  00000000 00000000 00000000 00000000 

ee1c60a0:  00000000 00000000 00000000 00000000 

ee1c60b0:  00000000 00000000 00000000 00000000 

ee1c60c0:  00000000 00000000 00000000 00000000 

ee1c60d0:  00000000 00000000 00000000 00000000 

ee1c60e0:  00000000 00000000 00000000 00000000 

ee1c60f0:  00000000 00000000 00000000 00000000 

ee1c6100:  00000000 00000000 00000000 00000000 

ee1c6110:  00000000 00000000 00000000 00000000 

ee1c6120:  00000000 00000000 00000000 00000000 

ee1c6130:  00000000 00000000 00000000 00000000 

ee1c6140:  00000000 00000000 00000000 00000000 

ee1c6150:  00000000 00000000 00000000 00000000 

ee1c6160:  00000000 00000000 00000000 00000000 

ee1c6170:  00000000 00000000 00000000 00000000 

ee1c6180:  00000000 00000000 00000000 00000000 

ee1c6190:  00000000 00000000 00000000 00000000 

ee1c61a0:  00000000 00000000 00000000 00000000 

ee1c61b0:  00000000 00000000 00000000 00000000 

ee1c61c0:  00000000 00000000 00000000 00000000 

ee1c61d0:  00000000 00000000 00000000 00000000 

ee1c61e0:  00000000 00000000 00000000 00000000 

ee1c61f0:  00000000 00000000 00000000 00000000 

ee1c6200:  00000000 00000000 00000000 00000000 

ee1c6210:  00000000 00000000 00000000 00000000 

ee1c6220:  00000000 00000000 00000000 00000000 

ee1c6230:  00000000 00000000 00000000 00000000 

ee1c6240:  00000000 00000000 00000000 00000000 

ee1c6250:  00000000 00000000 00000000 00000000 

ee1c6260:  00000000 00000000 00000000 00000000 

ee1c6270:  00000000 00000000 00000000 00000000 

ee1c6280:  00000000 00000000 00000000 00000000 

ee1c6290:  00000000 00000000 00000000 00000000 

ee1c62a0:  00000000 00000000 00000000 00000000 

ee1c62b0:  00000000 00000000 00000000 00000000 

ee1c62c0:  00000000 00000000 do_no_restart_syscall 00000000 

ee1c62d0:  00000000 00000000 00000000 00000000 

ee1c62e0:  00000000 00000000 00000000 00000000 

ee1c62f0:  57ac6e9d/*STACK_END_MAGIC*/


asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");


How to set the new process entry

int

copy_thread(unsigned long clone_flags, unsigned long stack_start,

        unsigned long stk_sz, struct task_struct *p, struct pt_regs *regs)

{

    struct thread_info *thread = task_thread_info(p);

    struct pt_regs *childregs = task_pt_regs(p);


    *childregs = *regs;

    childregs->ARM_r0 = 0;

    childregs->ARM_sp = stack_start;


    memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));

    thread->cpu_context.sp = (unsigned long)childregs;

    thread->cpu_context.pc = (unsigned long)ret_from_fork;


    clear_ptrace_hw_breakpoint(p);


    if (clone_flags & CLONE_SETTLS)

        thread->tp_value = regs->ARM_r3;


    thread_notify(THREAD_NOTIFY_COPY, thread);


    return 0;

}


/*8K内核栈的最后是 struct pt_regs

 *对它进行赋值:返回到用户空间后使用的栈,返回地址

 **/

#define task_pt_regs(p) \

    ((struct pt_regs *)(THREAD_START_SP + task_stack_page(p)) - 1)



/*

 * low level task data that entry.S needs immediate access to.

 * __switch_to() assumes cpu_context follows immediately after cpu_domain.

 */

crash> struct thread_info -o

struct thread_info {

    [0] unsigned long flags;

    [4] int preempt_count;

    [8] mm_segment_t addr_limit;

   [12] struct task_struct *task;

   [16] struct exec_domain *exec_domain;

   [20] __u32 cpu;

   [24] __u32 cpu_domain;

   [28] struct cpu_context_save cpu_context;

   [76] __u32 syscall;

   [80] __u8 used_cp[16];

   [96] unsigned long tp_value;

  [100] struct crunch_state crunchstate;

  [288] union fp_state fpstate;

  [432] union vfp_state vfpstate;

  [712] struct restart_block restart_block;

}

 

new process entry point

/*

 * This is how we return from a fork.

 */

ENTRY(ret_from_fork)

    bl    schedule_tail

    get_thread_info tsk

    ldr    r1, [tsk, #TI_FLAGS]        @ check for syscall tracing

    mov    why, #1

    tst    r1, #_TIF_SYSCALL_WORK        @ are we tracing syscalls?

    beq    ret_slow_syscall

    mov    r1, sp

    mov    r0, #1                @ trace exit [IP = 1]

    bl    syscall_trace

    b    ret_slow_syscall

ENDPROC(ret_from_fork)

 

sys_execve


/**************************************************************/

arch/arm/kernel/sys_arm.c


/* sys_execve() executes a new program.

 * This is called indirectly via a small wrapper

 */

asmlinkage int sys_execve(const char __user *filenamei,

              const char __user *const __user *argv,

              const char __user *const __user *envp, struct pt_regs *regs)

{

    int error;

    char * filename;


    filename = getname(filenamei);

    error = PTR_ERR(filename);

    if (IS_ERR(filename))

        goto out;

    error = do_execve(filename, argv, envp, regs);

    putname(filename);

out:

    return error;

}


int do_execve(const char *filename,

    const char __user *const __user *__argv,

    const char __user *const __user *__envp,

    struct pt_regs *regs)

{

    struct user_arg_ptr argv = { .ptr.native = __argv };

    struct user_arg_ptr envp = { .ptr.native = __envp };

    return do_execve_common(filename, argv, envp, regs);

}


/**************************************************************/


/*

 * sys_execve() executes a new program.

 */

static int do_execve_common(const char *filename,

                struct user_arg_ptr argv,

                struct user_arg_ptr envp,

                struct pt_regs *regs)

{

    struct linux_binprm *bprm;

    struct file *file;

    bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);

    file = open_exec(filename);

    sched_exec();


    bprm->file = file;

    bprm->filename = filename;

    bprm->interp = filename;


    bprm_mm_init(bprm);


    bprm->argc = count(argv, MAX_ARG_STRINGS);


    bprm->envc = count(envp, MAX_ARG_STRINGS);

    prepare_binprm(bprm);

    search_binary_handler(bprm,regs);

}


/*

 * Create a new mm_struct and populate it with a temporary stack

 * vm_area_struct.  We don't have enough context at this point to set the stack

 * flags, permissions, and offset, so we use temporary values.  We'll update

 * them later in setup_arg_pages().

 */

int bprm_mm_init(struct linux_binprm *bprm)

{

    int err;

    struct mm_struct *mm = NULL;

    /*mm_struct*/

    bprm->mm = mm = mm_alloc();

    /*vma_struct*/

    err = __bprm_mm_init(bprm);



    return 0;

}


/*

 * cycle the list of binary formats handler, until one recognizes the image

 */

int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)

{

    struct linux_binfmt *fmt;

    list_for_each_entry(fmt, &formats, lh)

    int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;

    fn(bprm, regs);

}

 

对elf 格式文件而言

fs/binfmt_elf.c

static struct linux_binfmt elf_format = {

    .module        = THIS_MODULE,

    .load_binary    = load_elf_binary,

    .load_shlib    = load_elf_library,

    .core_dump    = elf_core_dump,

    .min_coredump    = ELF_EXEC_PAGESIZE,

};


static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs)

{

    ----

    kernel_read();

    start_thread(regs, elf_entry, bprm->p);

}


#define start_thread(regs,pc,sp)                    \

({                                    \

    unsigned long *stack = (unsigned long *)sp;            \

    memset(regs->uregs, 0, sizeof(regs->uregs));            \

    if (current->personality & ADDR_LIMIT_32BIT)            \

        regs->ARM_cpsr = USR_MODE;                \

    else                                \

        regs->ARM_cpsr = USR26_MODE;                \

    if (elf_hwcap & HWCAP_THUMB && pc & 1)                \

        regs->ARM_cpsr |= PSR_T_BIT;                \

    regs->ARM_cpsr |= PSR_ENDSTATE;                    \

    regs->ARM_pc = pc & ~1;        /* pc */            \

    regs->ARM_sp = sp;        /* sp */            \

    regs->ARM_r2 = stack[2];    /* r2 (envp) */            \

    regs->ARM_r1 = stack[1];    /* r1 (argv) */            \

    regs->ARM_r0 = stack[0];    /* r0 (argc) */            \

})

 

总结:当运行execve时已经运行新创建的进程,不是说在old进程中加载后,再运行新进程的。