Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu
Description
A palindromic number or numeral palindrome is a 'symmetrical' number like 16461 that remains the same when its digits are reversed. In this problem you will be given two integers i j, you have to find the number of palindromic numbers between i and j (inclusive).
Input
Input starts with an integer T (≤ 200), denoting the number of test cases.
Each case starts with a line containing two integers i j (0 ≤ i, j ≤ 1017).
Output
For each case, print the case number and the total number of palindromic numbers between i and j (inclusive).
Sample Input
4
1 10
100 1
1 1000
1 10000
Sample Output
Case 1: 9
Case 2: 18
Case 3: 108
Case 4: 198
解题:回文数字。分成两种类型判断,一种是长度为奇数个的,一种是长度为偶数个的。
举个栗子。。。
20 是长度为2的,偶数长度,只要枚举dp[1][2]+d[1]什么意思呢?d[1]就是长度为1 的回文数字有多少个!dp[1][2]表示以1开始,长度为2的回文数字的个数。
再说120.。枚举d[2],由于是奇数,最后是遇到只有一个数字的情况,这是只要枚举最中间这一位就可以了,把低位与高位设置成一致的,1x1,只有从0开始枚举x,只要还在120的范围内,每枚举一个就加一,一旦不在120的范围内立即跳出循环。
再说一个偶数的长度1234.。。d[3]+dp[0][2]+dp[1][2],把低位跟高位一致后,1221,判断这个数是不是在1234内,是就加一,不是就加0,好吧加0就是不加,你赢了!!!!!!
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cstdlib> 5 #include <vector> 6 #include <climits> 7 #include <algorithm> 8 #include <cmath> 9 #define LL long long 10 #define INF 0x3f3f3f 11 using namespace std; 12 LL dp[200][1000],d[200]; 13 int len,bit[1000]; 14 void init() { 15 int i,j; 16 for(i = 0; i < 10; i++) 17 dp[i][1] = dp[i][2] = 1; 18 for(i = 3; i < 20; i++) { 19 for(j = 0; j < 10; j++) { 20 dp[j][i] = 10*dp[0][i-2]; 21 } 22 } 23 d[0] = 1;//以0开始的。。。0就是 24 for(i = 1; i < 20; i++) { 25 for(j = 1; j < 10; j++) 26 d[i] += dp[j][i]; 27 d[i] += d[i-1]; 28 }//算出0-长度为i的所有回文数字数目 29 } 30 LL go(int e) { 31 if(e < 0) return 1; 32 LL sum = 0; 33 for(int i = 0; i < 10; i++) { 34 sum += dp[i][e]; 35 } 36 return sum; 37 } 38 LL cal(LL n) { 39 if(n < 10) return n+1; 40 LL x = n,ans = 0,y = 0; 41 int i,j,k,v,u; 42 for(len = 0; x; x /= 10, len++) 43 bit[len] = x%10; 44 ans += d[len-1]; 45 for(j = 0,v = len>>1,i = len-1; i >= v; i--,j++) { 46 if(i == len-1) { 47 for(k = 1; k < bit[i]; k++) 48 ans += dp[k][len]; 49 } else if(i == j) { 50 u = i;break; 51 } else { 52 for(k = 0; k < bit[i]; k++) 53 ans += dp[k][len-j*2]; 54 } 55 } 56 if(i == j) {//奇数个长度,最后结果受最中间的那位影响 57 for(i = 0,j = len-1; i < j; i++,j--) 58 bit[i] = bit[j]; 59 for(k = 0; k < 10; k++){ 60 bit[u] = k; 61 for(y = i = 0; i < len; i++) 62 y = y*10+bit[i]; 63 if(y <= n) ans++; 64 else break; 65 } 66 }else{//偶数个长度,最后结果受最后一位影响 67 for(i = 0,j = len-1; i < j; i++,j--) 68 bit[i] = bit[j]; 69 for(y = i = 0; i < len; i++) 70 y = y*10+bit[i]; 71 if(y <= n) ans++; 72 } 73 return ans; 74 } 75 int main() { 76 init(); 77 int t,ks = 1; 78 LL a,b,c; 79 scanf("%d",&t); 80 while(t--){ 81 scanf("%lld %lld",&a,&b); 82 if(a > b) swap(a,b); 83 printf("Case %d: %lld\n",ks++,cal(b)-cal(a-1)); 84 } 85 return 0; 86 }