\(1068\).环形石子合并

题目描述:

给定\(n\)堆石子,围成一个圆环,要求合并成一堆石子,每次只能合并相邻两堆,每合并两堆都要花费体力,问最大的体力和最小的体力。

思路:

将长度为\(N\)的圆环变成长度为\(2n\)的序列,然后使用\(y\)\(DP\)分析法。
状态表示:\(f[i,j]\)表示从\(i\)\(j\)合并的最小体力值。
\(s[i,j]\)表示从\(i\)\(j\)的前缀和。
状态转移方程:\(f[i,j]=min(f[i,j],f[i,k]+f[k+1,j]+s_r-s_{l-1})\)

Code:

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 410, INF = 0x3f3f3f3f;

int n;
int w[N], s[N];
int f[N][N], g[N][N];

int main()
{
    cin >> n;
    for (int i = 1; i <= n; i ++ )
    {
        cin >> w[i];
        w[i + n] = w[i];
    }

    for (int i = 1; i <= n * 2; i ++ ) s[i] = s[i - 1] + w[i];

    memset(f, 0x3f, sizeof f);
    memset(g, -0x3f, sizeof g);

    for (int len = 1; len <= n; len ++ )
        for (int l = 1; l + len - 1 <= n * 2; l ++ )
        {
            int r = l + len - 1;
            if (l == r) f[l][r] = g[l][r] = 0;
            else
            {
                for (int k = l; k < r; k ++ )
                {
                    f[l][r] = min(f[l][r], f[l][k] + f[k + 1][r] + s[r] - s[l - 1]);
                    g[l][r] = max(g[l][r], g[l][k] + g[k + 1][r] + s[r] - s[l - 1]);
                }
            }
        }

    int minv = INF, maxv = -INF;
    for (int i = 1; i <= n; i ++ )
    {
        minv = min(minv, f[i][i + n - 1]);
        maxv = max(maxv, g[i][i + n - 1]);
    }

    cout << minv << endl << maxv << endl;

    return 0;
}