这是用Python实现的Neural Networks, 基于Python 2.7.9, numpy, matplotlib。
代码来源于斯坦福大学的课程: http://cs231n.github.io/neural-networks-case-study/
基本是照搬过来,通过这个程序有助于了解python语法,以及Neural Networks 的原理。
import numpy as np import matplotlib.pyplot as plt N = 200 # number of points per class D = 2 # dimensionality K = 3 # number of classes X = np.zeros((N*K,D)) # data matrix (each row = single example) y = np.zeros(N*K, dtype='uint8') # class labels for j in xrange(K): ix = range(N*j,N*(j+1)) r = np.linspace(0.0,1,N) # radius t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta X[ix] = np.c_[r*np.sin(t), r*np.cos(t)] y[ix] = j # print y # lets visualize the data: plt.scatter(X[:,0], X[:,1], s=40, c=y, alpha=0.5) plt.show() # Train a Linear Classifier # initialize parameters randomly h = 20 # size of hidden layer W = 0.01 * np.random.randn(D,h) b = np.zeros((1,h)) W2 = 0.01 * np.random.randn(h,K) b2 = np.zeros((1,K)) # define some hyperparameters step_size = 1e-0 reg = 1e-3 # regularization strength # gradient descent loop num_examples = X.shape[0] for i in xrange(1): # evaluate class scores, [N x K] hidden_layer = np.maximum(0, np.dot(X, W) + b) # note, ReLU activation # print np.size(hidden_layer,1) scores = np.dot(hidden_layer, W2) + b2 # compute the class probabilities exp_scores = np.exp(scores) probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # [N x K] # compute the loss: average cross-entropy loss and regularization corect_logprobs = -np.log(probs[range(num_examples),y]) data_loss = np.sum(corect_logprobs)/num_examples reg_loss = 0.5*reg*np.sum(W*W) + 0.5*reg*np.sum(W2*W2) loss = data_loss + reg_loss if i % 1000 == 0: print "iteration %d: loss %f" % (i, loss) # compute the gradient on scores dscores = probs dscores[range(num_examples),y] -= 1 dscores /= num_examples # backpropate the gradient to the parameters # first backprop into parameters W2 and b2 dW2 = np.dot(hidden_layer.T, dscores) db2 = np.sum(dscores, axis=0, keepdims=True) # next backprop into hidden layer dhidden = np.dot(dscores, W2.T) # backprop the ReLU non-linearity dhidden[hidden_layer <= 0] = 0 # finally into W,b dW = np.dot(X.T, dhidden) db = np.sum(dhidden, axis=0, keepdims=True) # add regularization gradient contribution dW2 += reg * W2 dW += reg * W # perform a parameter update W += -step_size * dW b += -step_size * db W2 += -step_size * dW2 b2 += -step_size * db2 # evaluate training set accuracy hidden_layer = np.maximum(0, np.dot(X, W) + b) scores = np.dot(hidden_layer, W2) + b2 predicted_class = np.argmax(scores, axis=1) print 'training accuracy: %.2f' % (np.mean(predicted_class == y))
随机生成的数据
运行结果