ACM
题目地址:POJ 1236
题意:
给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得有向图成为一个强连通图。
分析:
跟HDU 2767 Proving Equivalences(题解)一样的题目,只是多了个问题,事实上转化成DAG后就不难考虑了,事实上仅仅要选择入度为0的点即可了。
代码:
/* * Author: illuz <iilluzen[at]gmail.com> * File: 1236.cpp * Create Date: 2014-07-30 15:13:12 * Descripton: Tarjan */ #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #include <vector> #include <stack> #define repf(i,a,b) for(int i=(a);i<=(b);i++) typedef long long ll; const int N = 105; vector<int> G[N]; stack<int> S; int low[N], dfn[N], sccno[N], tclock, scccnt; int id[N], od[N]; int n, rd; void tarjan(int u) { low[u] = dfn[u] = ++tclock; S.push(u); int sz = G[u].size(); repf (i, 0, sz - 1) { int v = G[u][i]; if (!dfn[v]) { tarjan(v); low[u] = min(low[u], low[v]); } else if (!sccno[v]) { low[u] = min(low[u], dfn[v]); } } if (low[u] == dfn[u]) { scccnt++; int v = -1; while (v != u) { v = S.top(); S.pop(); sccno[v] = scccnt; } } } void read() { repf (i, 1, n) { G[i].clear(); while (scanf("%d", &rd) && rd) { G[i].push_back(rd); } } } void find_scc() { tclock = scccnt = 0; memset(dfn, 0, sizeof(dfn)); memset(low, 0, sizeof(low)); memset(sccno, 0, sizeof(sccno)); repf (i, 1, n) { if (!dfn[i]) { tarjan(i); } } } void solve() { if (scccnt == 1) { printf("1\n0\n"); return; } memset(id, 0, sizeof(id)); memset(od, 0, sizeof(od)); repf (u, 1, n) { int sz = G[u].size(); repf (i, 0, sz - 1) { int v = G[u][i]; if (sccno[u] != sccno[v]) { id[sccno[v]]++; od[sccno[u]]++; } } } int idnum = 0, odnum = 0; repf (i, 1, scccnt) { idnum += (id[i] == 0); odnum += (od[i] == 0); } printf("%d\n%d\n", idnum, max(idnum, odnum)); } int main() { while (~scanf("%d", &n)) { read(); find_scc(); solve(); } return 0; }