【YBTOJ】【HDU3652】B-number

题目大意:

查询 \([1,n]\) 中有多少个数包含 \(13\) 并能被其整除。

正文:

数位 DP 板子题。设 \(f_{len,x,mod,flag,pos}\) 表示,在第 \(len\) 位时,其数为 \(x\),且当前余数是 \(mod\),是否有 \(13\) 出现,是否到顶的方案数。

代码:

const int N = 15;

inline ll Read()
{
	ll x = 0, f = 1;
	char c = getchar();
	while (c != '-' && (c < '0' || c > '9')) c = getchar();
	if (c == '-') f = -f, c = getchar();
	while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
	return x * f;
}

ll n;

int a[N], Len;
ll f[N][N][N][2][2];
ll DP (int len, int x, int mod, bool flag, bool pos)
{
	if (~f[len][x][mod][flag][pos]) return f[len][x][mod][flag][pos];
	if (!len) return flag && !mod;
	int m = pos? a[len]: 9;
	ll ans = 0;
	for (int i = 0; i <= m; i++)
		ans += DP(len - 1, i, (mod * 10 + i) % 13, (x == 1 && i == 3) || flag, pos && i == m);
	return f[len][x][mod][flag][pos] = ans;
}

ll Solve (ll n)
{
	Len = 0;
	memset (a, 0, sizeof a);
	memset (f, -1, sizeof f);
	for (ll m = n; m; m /= 10)
		a[++Len] = m % 10;
	ll ans = 0;
	for (int i = 0; i <= a[Len]; i++)
		ans += DP(Len - 1, i, i, 0, i == a[Len]);
	return ans;
}

int main()
{
	while (~scanf ("%lld", &n))
	{
		printf ("%lld\n", Solve (n));
	}
	return 0;
}