6. Flink 的 kafka 连接器有什么特别的地方?

Flink源码中有一个独立的connectors模块,所有的其他connector都依赖于此模块,Flink 在1.9版本发布的全新kafka连接器,摒弃了之前连接不同版本的kafka集群需要依赖不同版本的connector这种做法,只需要依赖一个connector即可。

7. 说说 Flink的内存管理是如何做的?

Flink 并不是将大量对象存在堆上,而是将对象都序列化到一个预分配的内存块上。

此外,Flink大量的使用了堆外内存。如果需要处理的数据超出了内存限制,则会将部分数据存储到硬盘上。

Flink 为了直接操作二进制数据实现了自己的序列化框架。

理论上Flink的内存管理分为三部分:

Network Buffers:这个是在TaskManager启动的时候分配的,这是一组用于缓存网络数据的内存,每个块是32K,默认分配2048个,可以通过“taskmanager.network.numberOfBuffers”修改

Memory Manage pool:大量的Memory Segment块,用于运行时的算法(Sort/Join/Shuffle等),这部分启动的时候就会分配。下面这段代码,根据配置文件中的各种参数来计算内存的分配方法。(heap or off-heap,这个放到下节谈),内存的分配支持预分配和lazy load,默认懒加载的方式。

User Code,这部分是除了Memory Manager之外的内存用于User code和TaskManager本身的数据结构。

8. 说说 Flink的序列化如何做的?

Java本身自带的序列化和反序列化的功能,但是辅助信息占用空间比较大,在序列化对象时记录了过多的类信息。Apache Flink摒弃了Java原生的序列化方法,以独特的方式处理数据类型和序列化,包含自己的类型描述符,泛型类型提取和类型序列化框架。TypeInformation 是所有类型描述符的基类。它揭示了该类型的一些基本属性,并且可以生成序列化器。TypeInformation 支持以下几种类型:

BasicTypeInfo: 任意Java 基本类型或 String 类型

BasicArrayTypeInfo: 任意Java基本类型数组或 String 数组

WritableTypeInfo: 任意 Hadoop Writable 接口的实现类

TupleTypeInfo: 任意的 Flink Tuple 类型(支持Tuple1 to Tuple25)。Flink tuples 是固定长度固定类型的Java Tuple实现

CaseClassTypeInfo: 任意的 Scala CaseClass(包括 Scala tuples)

PojoTypeInfo: 任意的 POJO (Java or Scala),例如,Java对象的所有成员变量,要么是 public 修饰符定义,要么有 getter/setter 方法

GenericTypeInfo: 任意无法匹配之前几种类型的类

针对前六种类型数据集,Flink皆可以自动生成对应的TypeSerializer,能非常高效地对数据集进行序列化和反序列化。

9. Flink中的Window出现了数据倾斜,你有什么解决办法?

window产生数据倾斜指的是数据在不同的窗口内堆积的数据量相差过多。本质上产生这种情况的原因是数据源头发送的数据量速度不同导致的。出现这种情况一般通过两种方式来解决:

在数据进入窗口前做预聚合

重新设计窗口聚合的key

10. Flink中在使用聚合函数 GroupBy、Distinct、KeyBy 等函数时出现数据热点该如何解决?

数据倾斜和数据热点是所有大数据框架绕不过去的问题。处理这类问题主要从3个方面入手:

在业务上规避这类问题

例如一个假设订单场景,北京和上海两个城市订单量增长几十倍,其余城市的数据量不变。这时候我们在进行聚合的时候,北京和上海就会出现数据堆积,我们可以单独数据北京和上海的数据。

Key的设计上

把热key进行拆分,比如上个例子中的北京和上海,可以把北京和上海按照地区进行拆分聚合。

参数设置

Flink 1.9.0 SQL(Blink Planner) 性能优化中一项重要的改进就是升级了微批模型,即 MiniBatch。原理是缓存一定的数据后再触发处理,以减少对State的访问,从而提升吞吐和减少数据的输出量。