3.2开始是背包的介绍,然后六个题目,没有一题和背包有关系!
Factorials:比较经典的一个题。求n阶乘最右边第一个不为0的数字。因为0肯定是有一个因子2和一个因子5组合成的,而在n!中因数2的个数显然远多于5的个数。所以for一遍n,碰到因数2就加1,碰到因数5就减1。剩下的乘起来对10取mod,最后再乘一下剩下的2的个数。
1 # include <stdio.h> 2 3 4 int main () 5 { 6 int n, ans, i, two, ii ; 7 freopen ("fact4.in", "r", stdin) ; 8 freopen ("fact4.out", "w", stdout) ; 9 while (~scanf ("%d", &n)) 10 { 11 ans = 1 ; 12 two = 0 ; 13 for (i = 1 ; i <= n ; i++) 14 { 15 ii = i ; 16 while (ii%2 == 0) ii/=2, two++ ; 17 while (ii%5 == 0) ii/=5, two-- ; 18 ans = (ans*ii)%10 ; 19 } 20 while (two--) ans = (ans*2)%10 ; 21 printf("%d\n", ans) ; 22 } 23 return 0 ; 24 }
Stringsobits:递推加递归。递推算出对于所有的n和l,不超过l个1长度为n的字符串有几个。f[n,l] = f[n-1,l]+f[n-1,l-1]。边界要特别注意:f[n,0] = 1。之后递归,根据长度为n开头为0且1的个数不超过L的字符串个数可以确定第一位是0还是1。
1 # include <stdio.h> 2 # include <string.h> 3 4 5 int tab[40][40] ; 6 7 8 int recv(int n, int l) 9 { 10 if (l == 0) return 1 ; 11 if (l > n) return recv (n,n) ; 12 if (tab[n][l] != -1) return tab[n][l] ; 13 return tab[n][l] = (recv(n-1,l)+recv(n-1,l-1)) ; 14 } 15 16 17 int main () 18 { 19 long long n, l, I, i ; 20 freopen ("kimbits.in", "r", stdin) ; 21 freopen ("kimbits.out", "w", stdout) ; 22 memset (tab, -1, sizeof(tab)) ; 23 tab[0][0] = 1 ; 24 while (~scanf ("%lld%lld%lld", &n, &l, &I)) 25 { 26 for (i = n ; i > 0 ; i--) 27 { 28 n = i ; 29 if (I <= recv(n-1,l)) 30 printf ("0") ; 31 else{ 32 printf ("1") ; 33 I -= recv(n-1,l) ; 34 l-- ; 35 } 36 } 37 puts ("") ; 38 } 39 return 0 ; 40 }
Spinning Wheels:这题主要题意细节比较多,其他没啥。把时间从0到359枚举一次,因为超过这个时间肯定陷入周期。注意细节就可以了。
1 # include <stdio.h> 2 3 4 typedef struct WHEEL{ 5 int angle[360] ; 6 int speed ; 7 8 }WHEEL ; 9 10 11 WHEEL wheel[5] ; 12 int buff[360] ; 13 14 15 void Input(WHEEL* p) 16 { 17 int i, a, b, num ; 18 for (i = 0 ; i < 360 ; i++) 19 p->angle[i] = 0 ; 20 scanf ("%d", &p->speed) ; 21 scanf ("%d", &num) ; 22 while (num--) 23 { 24 scanf ("%d%d", &a, &b) ; 25 for (i = a ; i <= a+b ; i++) 26 p->angle[i%360] = 1 ; 27 } 28 } 29 30 31 void Move(WHEEL* p) 32 { 33 int i ; 34 for (i = 0 ; i < 360 ; i++) 35 buff[i] = p->angle[i] ; 36 for (i = 0 ; i < 360 ; i++) 37 p->angle[i] = buff[(i-p->speed+360)%360] ; 38 } 39 40 41 int Judge() 42 { 43 int i, j ; 44 for (i = 0 ; i < 360 ; i++) 45 { 46 for (j = 0 ; j < 5 ; j++) 47 if (wheel[j].angle[i] == 0) break ; 48 if (j >= 5) return 1 ; 49 } 50 return 0 ; 51 } 52 53 54 int gao() 55 { 56 int i, j ; 57 for (i = 0 ; i < 360 ; i++) 58 { 59 if (Judge()) return i ; 60 for (j = 0 ; j < 5 ; j++) 61 Move(&wheel[j]) ; 62 } 63 return -1 ; 64 } 65 66 67 int main () 68 { 69 int i, ans ; 70 freopen ("spin.in", "r", stdin) ; 71 freopen ("spin.out", "w", stdout) ; 72 for (i = 0 ; i < 5 ; i++) 73 Input(&wheel[i]) ; 74 ans = gao() ; 75 if (ans == -1) printf ("none\n") ; 76 else printf ("%d\n", ans) ; 77 return 0 ; 78 }
Feed Ratios:一开始没注意答案不会超过100这个条件。看到以后就知道是一个O(n^3)的暴力算法。同样是要注意细节,每次除法除数都要判断是否为0。
1 # include <stdio.h> 2 3 4 int judge (int a, int b) 5 { 6 if (b == 0 && a == 0) return 101 ; 7 if (b == 0) return -1 ; 8 if (a % b != 0) return -1 ; 9 return a/b ; 10 } 11 12 13 int min(int a, int b){return a<b?a:b;} 14 15 16 int main () 17 { 18 int i, j, k, kk ; 19 int a, b, c, ka, kb, kc, a1, a2, a3, a4 ; 20 int x[4][3] ; 21 freopen ("ratios.in", "r", stdin) ; 22 freopen ("ratios.out", "w", stdout) ; 23 for (i = 0 ; i < 4 ; i++) 24 for (j = 0 ; j < 3 ; j++) 25 scanf ("%d", &x[i][j]) ; 26 a4 = 1000 ; 27 for (i = 0 ; i <= 100 ; i++) 28 for (j = 0 ; j <= 100 ; j++) 29 for (k = 0 ; k <= 100 ; k++) 30 { 31 if (i == 0 && j == 0 && k == 0) continue ; 32 a = i * x[1][0] + j * x[2][0] + k * x[3][0] ; 33 b = i * x[1][1] + j * x[2][1] + k * x[3][1] ; 34 c = i * x[1][2] + j * x[2][2] + k * x[3][2] ; 35 if (b * x[0][0] != a * x[0][1]) continue ; 36 if (c * x[0][0] != a * x[0][2]) continue ; 37 ka = judge(a, x[0][0]) ; 38 if (ka < 0) continue ; 39 kb = judge(b, x[0][1]) ; 40 if (kb < 0) continue ; 41 kc = judge(c, x[0][2]) ; 42 if (kc < 0) continue ; 43 if (ka > 100 && kb > 100 && kc > 100) continue ; 44 kk = min(ka, min(kb, kc)) ; 45 if (ka > 100) ka = kk ; 46 if (ka != kk) continue ; 47 if (kb > 100) kb = kk ; 48 if (kb != kk) continue ; 49 if (kc > 100) kc = kk ; 50 if (kc != kk) continue ; 51 if (kk < a4) a1 = i, a2 = j, a3 = k, a4 = kk ; 52 } 53 if (a4 > 100) puts ("NONE") ; 54 else printf ("%d %d %d %d\n", a1,a2,a3,a4) ; 55 return 0 ; 56 }
Magic Squares:标准BFS解,没啥好说的。值得一提的是hash的时候,可以像我这样直接拿拼出来的数字取mod,也可以用最完美的逆序数哈希算法。这题的代码稍加变形就可以拿来A八数码问题。
1 # include <stdio.h> 2 # include <string.h> 3 4 5 # define HASH_MAX 50021 6 7 8 int hash[HASH_MAX+10] ; 9 int a[8], start, end ; 10 int q[HASH_MAX+10], fa[HASH_MAX+10], step[HASH_MAX+10] ; 11 char path[HASH_MAX+10] ; 12 char tab[] = "ABC" ; 13 14 15 int A(int x) 16 { 17 int i, t ; 18 for (i = 7 ; i >= 0 ; i--) 19 a[i] = x%10, x /= 10 ; 20 for (i = 0 ; i < 4 ; i++) 21 t = a[i], a[i] = a[7-i], a[7-i] = t ; 22 for (i = 0, x = 0 ; i < 8 ; i++) 23 x = x * 10 + a[i] ; 24 return x ; 25 } 26 27 int B(int x) 28 { 29 int i, t ; 30 for (i = 7 ; i >= 0 ; i--) 31 a[i] = x%10, x /= 10 ; 32 t = a[3], a[3] = a[2], a[2] = a[1], a[1] = a[0], a[0] = t ; 33 t = a[4], a[4] = a[5], a[5] = a[6], a[6] = a[7], a[7] = t ; 34 for (i = 0, x = 0 ; i < 8 ; i++) 35 x = x * 10 + a[i] ; 36 return x ; 37 } 38 39 40 int C(int x) 41 { 42 int i, t ; 43 for (i = 7 ; i >= 0 ; i--) 44 a[i] = x%10, x /= 10 ; 45 t = a[2], a[2] = a[1], a[1] = a[6], a[6] = a[5], a[5] = t ; 46 for (i = 0, x = 0 ; i < 8 ; i++) 47 x = x * 10 + a[i] ; 48 return x ; 49 } 50 51 52 int hashash(int x) 53 { 54 int i ; 55 for (i = x % HASH_MAX ; hash[i] != 0; i=(i+1)%HASH_MAX) 56 if (hash[i] == x) return 1 ; 57 return 0 ; 58 } 59 60 61 void Hash(int x) 62 { 63 int i ; 64 for (i = x % HASH_MAX ; hash[i] != 0 ; i = (i+1)%HASH_MAX) ; 65 hash[i] = x ; 66 } 67 68 69 int bfs () 70 { 71 int i, front = 0, rear = 1, x, xx ; 72 int (*fun[3])(int) = {A, B, C} ; 73 q[0] = start ; 74 Hash(start) ; 75 step[0] = 0 ; 76 while (front != rear) 77 { 78 x = q[front++] ; 79 if (x == end) return front-1 ; 80 for (i = 0 ; i < 3 ; i++) 81 { 82 xx = (*fun[i])(x) ; 83 if (!hashash(xx)) 84 { 85 Hash(xx) ; 86 path[rear] = tab[i] ; 87 fa[rear] = front-1 ; 88 step[rear] = step[front-1] + 1 ; 89 q[rear++] = xx ; 90 } 91 } 92 } 93 } 94 95 96 void PrtPath(int idx){ 97 if (idx == 0) return ; 98 PrtPath(fa[idx]) ; 99 printf ("%c", path[idx]) ; 100 } 101 102 103 int main () 104 { 105 int i, idx ; 106 freopen ("msquare.in", "r", stdin) ; 107 freopen ("msquare.out", "w", stdout) ; 108 while (~scanf ("%d %d %d %d %d %d %d %d", 109 &a[0], &a[1], &a[2], &a[3], 110 &a[4], &a[5], &a[6], &a[7])) 111 { 112 memset (hash, 0, sizeof(hash)) ; 113 end = 0 ; 114 for (i = 0 ;i < 8 ; i++) end = end*10+a[i] ; 115 start = 12345678 ; 116 idx = bfs () ; 117 printf ("%d\n", step[idx]) ; 118 PrtPath(idx) ; 119 printf ("\n") ; 120 } 121 return 0 ; 122 }
Sweet Butter:很容易想到枚举每个点作为“中点”,剩下的问题就是单源最短路径问题。值得注意的是点的个数是800,边数是1450,是一个很稀疏的图,可以用Dijstra+堆优化(O((V+E)lgV))或者SPFA算法。这里用的是Dijkstra+堆优化的方法过的。本题是这章里面代码量最大的。某些小朋友偷懒不好好写堆,用STL的优先队列来写,也是可以的- -。
1 # include <stdio.h> 2 # include <stdlib.h> 3 # include <string.h> 4 5 6 typedef struct EDGE{ 7 int s, e, w ; 8 }EDGE ; 9 10 11 typedef struct VERTEX{ 12 int idx, dist ; 13 }VERTEX ; 14 15 16 EDGE edge[3100] ; 17 int vidx[810], vnum[810], num[810] ; 18 int INF = 0x3f3f3f3f ; 19 20 21 int dist[810], vis[810], inheap[810] ; 22 VERTEX heap[810] ; 23 int heap_len ; 24 25 26 void heapify(int idx) 27 { 28 VERTEX tmp ; 29 int lidx = idx ; 30 if (idx*2 <= heap_len && heap[idx*2].dist < heap[lidx].dist) 31 lidx = idx*2 ; 32 if (idx*2+1 <= heap_len && heap[idx*2+1].dist < heap[lidx].dist) 33 lidx = idx*2+1 ; 34 35 if (lidx != idx){ 36 inheap[heap[idx].idx] = lidx ; 37 inheap[heap[lidx].idx] = idx ; 38 tmp = heap[idx], heap[idx] = heap[lidx], heap[lidx] = tmp ; 39 heapify (lidx) ; 40 } 41 } 42 43 44 VERTEX pop() 45 { 46 VERTEX rtn = heap[1] ; 47 heap[1] = heap[heap_len--] ; 48 if (heap_len) 49 { 50 inheap[heap[1].idx] = 1 ; 51 heapify(1) ; 52 } 53 return rtn ; 54 } 55 56 57 void update (int vidx, int d) 58 { 59 VERTEX tmp ; 60 int i ; 61 if (inheap[vidx] == 0) 62 heap[heap_len+1].idx = vidx, heap[heap_len+1].dist = d, 63 inheap[vidx] = heap_len+1, heap_len++ ; 64 else heap[inheap[vidx]].dist = d ; 65 66 for (i = inheap[vidx] ; i != 1 ; i /= 2) 67 { 68 if (heap[i/2].dist > heap[i].dist) 69 { 70 inheap[heap[i/2].idx] = i ; 71 inheap[heap[i].idx] = i/2 ; 72 tmp = heap[i/2], heap[i/2] = heap[i], heap[i] = tmp ; 73 } 74 else break ; 75 } 76 } 77 78 79 void dijkstra(int sv, int n) 80 { 81 VERTEX v ; 82 int i, ii; 83 memset (vis, 0, sizeof(vis)) ; 84 memset (dist, 0x3f, sizeof(dist)) ; 85 memset (inheap, 0, sizeof(inheap)) ; 86 heap[1].idx = sv, heap[1].dist = 0, inheap[sv] = 1, heap_len = 1 ; 87 for (ii = 1 ; ii < n ; ii++) 88 { 89 v = pop() ; 90 dist[v.idx] = v.dist ; 91 vis[v.idx] = 1 ; 92 for (i = 0 ; i < vnum[v.idx] ; i++) if (vis[edge[vidx[v.idx]+i].e] == 0) 93 if (edge[vidx[v.idx]+i].w + v.dist < dist[edge[vidx[v.idx]+i].e]) 94 { 95 dist[edge[vidx[v.idx]+i].e] = edge[vidx[v.idx]+i].w + v.dist ; 96 update (edge[vidx[v.idx]+i].e, dist[edge[vidx[v.idx]+i].e]) ; 97 } 98 } 99 } 100 101 102 int gao(int sv, int n) 103 { 104 int i, ans = 0 ; 105 dijkstra(sv, n) ; 106 for (i = 1 ; i <= n ; i++) 107 ans += (num[i] * dist[i]) ; 108 return ans ; 109 } 110 111 112 int min(int a, int b){return a<b?a:b;} 113 114 115 int cmp(const void *a, const void *b) 116 { 117 EDGE *p = (EDGE*)a, *q = (EDGE*)b ; 118 if (p->s != q->s) return p->s - q->s ; 119 if (p->e != q->e) return p->e - q->e ; 120 return p->w - q->w ; 121 } 122 123 124 int main () 125 { 126 int n, p, c, ans, x ; 127 int i, s, e, w ; 128 freopen ("butter.in", "r", stdin) ; 129 freopen ("butter.out", "w", stdout) ; 130 while (~scanf ("%d%d%d", &n, &p, &c)) 131 { 132 memset (num,0,sizeof(num)) ; 133 while (n--) 134 scanf ("%d", &x), num[x]++ ; 135 for (i = 0 ;i < c ; i++) 136 { 137 scanf ("%d%d%d", &s, &e, &w) ; 138 edge[2*i].s = s, edge[2*i].e = e, edge[2*i].w = w ; 139 edge[2*i+1].s = e, edge[2*i+1].e = s, edge[2*i+1].w = w ; 140 } 141 qsort(edge, 2*c, sizeof(edge[0]), cmp) ; 142 memset (vnum, 0, sizeof(vnum)) ; 143 memset (vidx, -1, sizeof(vidx)) ; 144 for (i = 0 ; i < 2*c ; i++) 145 { 146 vnum[edge[i].s]++ ; 147 if (vidx[edge[i].s] == -1) vidx[edge[i].s] = i ; 148 } 149 ans = INF ; 150 for (i = 1 ; i <= p ; i++) 151 ans = min(ans, gao(i, p)) ; 152 printf ("%d\n", ans) ; 153 } 154 return 0 ; 155 }
UP:用SPFA实现了一个,时间上比Dijstra要快上一些。而且SPFA好写啊!
1 # include <stdio.h> 2 # include <stdlib.h> 3 # include <string.h> 4 5 6 typedef struct EDGE{ 7 int s, e, w ; 8 }EDGE ; 9 10 11 typedef struct VERTEX{ 12 int idx, dist ; 13 }VERTEX ; 14 15 16 EDGE edge[3100] ; 17 int vidx[810], vnum[810], num[810] ; 18 int INF = 0x3f3f3f3f ; 19 20 21 int dist[810], inqueue[810], q[6000] ; 22 23 24 void spfa(int sv, int n) 25 { 26 int f, r, v, vv, i ; 27 memset (dist, 0x3f, sizeof(dist)) ; 28 memset (inqueue, 0, sizeof(inqueue)) ; 29 dist[sv] = 0, q[3000] = sv, inqueue[sv] = 1 ; 30 for (f = 3000, r = 3001 ; f < r ; f++) 31 { 32 v = q[f] ; 33 inqueue[v] = 0 ; 34 for (i = vidx[v] ; i < vidx[v]+vnum[v] ; i++) 35 { 36 vv = edge[i].e ; 37 if (dist[vv] > dist[v]+edge[i].w) 38 { 39 dist[vv] = dist[v]+edge[i].w ; 40 if (inqueue[vv] == 0) 41 { 42 inqueue[vv] = 1 ; 43 if (dist[vv] < dist[q[f]]) 44 q[--f] = vv ; 45 else q[r++] = vv ; 46 } 47 } 48 } 49 } 50 } 51 52 53 int gao(int sv, int n) 54 { 55 int i, ans = 0 ; 56 spfa(sv, n) ; 57 for (i = 1 ; i <= n ; i++) 58 ans += (num[i] * dist[i]) ; 59 return ans ; 60 } 61 62 63 int min(int a, int b){return a<b?a:b;} 64 65 66 int cmp(const void *a, const void *b) 67 { 68 EDGE *p = (EDGE*)a, *q = (EDGE*)b ; 69 if (p->s != q->s) return p->s - q->s ; 70 if (p->e != q->e) return p->e - q->e ; 71 return p->w - q->w ; 72 } 73 74 75 int main () 76 { 77 int n, p, c, ans, x ; 78 int i, s, e, w ; 79 freopen ("butter.in", "r", stdin) ; 80 freopen ("butter.out", "w", stdout) ; 81 while (~scanf ("%d%d%d", &n, &p, &c)) 82 { 83 memset (num,0,sizeof(num)) ; 84 while (n--) 85 scanf ("%d", &x), num[x]++ ; 86 for (i = 0 ;i < c ; i++) 87 { 88 scanf ("%d%d%d", &s, &e, &w) ; 89 edge[2*i].s = s, edge[2*i].e = e, edge[2*i].w = w ; 90 edge[2*i+1].s = e, edge[2*i+1].e = s, edge[2*i+1].w = w ; 91 } 92 qsort(edge, 2*c, sizeof(edge[0]), cmp) ; 93 memset (vnum, 0, sizeof(vnum)) ; 94 memset (vidx, -1, sizeof(vidx)) ; 95 for (i = 0 ; i < 2*c ; i++) 96 { 97 vnum[edge[i].s]++ ; 98 if (vidx[edge[i].s] == -1) vidx[edge[i].s] = i ; 99 } 100 ans = INF ; 101 for (i = 1 ; i <= p ; i++) 102 ans = min(ans, gao(i, p)) ; 103 printf ("%d\n", ans) ; 104 } 105 return 0 ; 106 }