Introduction

ECMAScript 2015 is the newest version of the ECMAScript standard. This standard was ratified in June 2015. ES2015 is a significant update to the language, and the first major update to the language since ES5 was standardized in 2009. Implementation of these features in major JavaScript engines is ​​underway now​​.

See the ​​ES2015 standard​​ for full specification of the ECMAScript 2015 language.

ECMAScript 2015 Features

  1. Arrows and Lexical This

Arrows are a function shorthand using the => syntax. They are syntactically similar to the related feature in C#, Java 8 and CoffeeScript. They support both expression and statement bodies. Unlike functions, arrows share the same lexical ​​this​​ as their surrounding code.

​// Expression bodies var odds = evens.map(v => v + 1); var nums = evens.map((v, i) => v + i); // Statement bodies nums.forEach(v => { if (v % 5 === 0) fives.push(v); }); // Lexical this var bob = { _name: "Bob", _friends: [], printFriends() { this._friends.forEach(f => console.log(this._name + " knows " + f)); } }; ​

 

  1. Classes

 

ES2015 classes are a simple sugar over the prototype-based OO pattern. Having a single convenient declarative form makes class patterns easier to use, and encourages interoperability. Classes support prototype-based inheritance, super calls, instance and static methods and constructors.



class SkinnedMesh extends THREE.Mesh {
constructor(geometry, materials) {
super(geometry, materials);

this.idMatrix = SkinnedMesh.defaultMatrix();
this.bones = [];
this.boneMatrices = [];
//...
}
update(camera) {
//...
super.update();
}
static defaultMatrix() {
return new THREE.Matrix4();
}
}


  1. Enhanced Object Literals

Object literals are extended to support setting the prototype at construction, shorthand for ​​foo: foo​​ assignments, defining methods and making super calls. Together, these also bring object literals and class declarations closer together, and let object-based design benefit from some of the same conveniences.



var obj = {
// Sets the prototype. "__proto__" or '__proto__' would also work.
__proto__: theProtoObj,
// Computed property name does not set prototype or trigger early error for
// duplicate __proto__ properties.
['__proto__']: somethingElse,
// Shorthand for ‘handler: handler’
handler,
// Methods
toString() {
// Super calls
return "d " + super.toString();
},
// Computed (dynamic) property names
[ "prop_" + (() => 42)() ]: 42
};


The ​​__proto__​​ property requires native support, and was deprecated in previous ECMAScript versions. Most engines now support the property, but ​​some do not​​. Also, note that only ​​web browsers​​ are required to implement it, as it's in ​​Annex B​​. It is available in Node.

  1. Template Strings

Template strings provide syntactic sugar for constructing strings. This is similar to string interpolation features in Perl, Python and more. Optionally, a tag can be added to allow the string construction to be customized, avoiding injection attacks or constructing higher level data structures from string contents.



// Basic literal string creation
`This is a pretty little template string.`

// Multiline strings
`In ES5 this is
not legal.`

// Interpolate variable bindings
var name = "Bob", time = "today";
`Hello ${name}, how are you ${time}?`

// Unescaped template strings
String.raw`In ES5 "\n" is a line-feed.`

// Construct an HTTP request prefix is used to interpret the replacements and construction
GET`http://foo.org/bar?a=${a}&b=${b}
Content-Type: application/json
X-Credentials: ${credentials}
{ "foo": ${foo},
"bar": ${bar}}`(myOnReadyStateChangeHandler);


Destructuring

Destructuring allows binding using pattern matching, with support for matching arrays and objects. Destructuring is fail-soft, similar to standard object lookup ​​foo["bar"]​​, producing ​​undefined​​ values when not found.



// list matching
var [a, ,b] = [1,2,3];
a === 1;
b === 3;

// object matching
var { op: a, lhs: { op: b }, rhs: c }
= getASTNode()

// object matching shorthand
// binds `op`, `lhs` and `rhs` in scope
var {op, lhs, rhs} = getASTNode()

// Can be used in parameter position
function g({name: x}) {
console.log(x);
}
g({name: 5})

// Fail-soft destructuring
var [a] = [];
a === undefined;

// Fail-soft destructuring with defaults
var [a = 1] = [];
a === 1;

// Destructuring + defaults arguments
function r({x, y, w = 10, h = 10}) {
return x + y + w + h;
}
r({x:1, y:2}) === 23


  1. Default + Rest + Spread

Callee-evaluated default parameter values. Turn an array into consecutive arguments in a function call. Bind trailing parameters to an array. Rest replaces the need for ​​arguments​​ and addresses common cases more directly.



function f(x, y=12) {
// y is 12 if not passed (or passed as undefined)
return x + y;
}
f(3) == 15



function f(x, ...y) {
// y is an Array
return x * y.length;
}
f(3, "hello", true) == 6



function f(x, y, z) {
return x + y + z;
}
// Pass each elem of array as argument
f(...[1,2,3]) == 6


  • Let + Const

Block-scoped binding constructs. ​​let​​ is the new ​​var​​. ​​const​​ is single-assignment. Static restrictions prevent use before assignment.



function f() {
{
let x;
{
// okay, block scoped name
const x = "sneaky";
// error, const
x = "foo";
}
// okay, declared with `let`
x = "bar";
// error, already declared in block
let x = "inner";
}
}


  • Iterators + For..Of

Iterator objects enable custom iteration like CLR IEnumerable or Java Iterable. Generalize ​​for..in​​ to custom iterator-based iteration with ​​for..of​​. Don’t require realizing an array, enabling lazy design patterns like LINQ.



let fibonacci = {
[Symbol.iterator]() {
let pre = 0, cur = 1;
return {
next() {
[pre, cur] = [cur, pre + cur];
return { done: false, value: cur }
}
}
}
}

for (var n of fibonacci) {
// truncate the sequence at 1000
if (n > 1000)
break;
console.log(n);
}


Iteration is based on these duck-typed interfaces (using ​​TypeScript​​ type syntax for exposition only):



interface IteratorResult {
done: boolean;
value: any;
}
interface Iterator {
next(): IteratorResult;
}
interface Iterable {
[Symbol.iterator](): Iterator
}


Support via polyfill

In order to use Iterators you must include the Babel ​​polyfill​​.

  • Generators

Generators simplify iterator-authoring using ​​function*​​ and ​​yield​​. A function declared as function* returns a Generator instance. Generators are subtypes of iterators which include additional ​​next​​ and ​​throw​​. These enable values to flow back into the generator, so ​​yield​​ is an expression form which returns a value (or throws).

Note: Can also be used to enable ‘await’-like async programming, see also ES7 ​​await​​ ​​proposal​​.



var fibonacci = {
[Symbol.iterator]: function*() {
var pre = 0, cur = 1;
for (;;) {
var temp = pre;
pre = cur;
cur += temp;
yield cur;
}
}
}

for (var n of fibonacci) {
// truncate the sequence at 1000
if (n > 1000)
break;
console.log(n);
}


The generator interface is (using ​​TypeScript​​ type syntax for exposition only):



interface Generator extends Iterator {
next(value?: any): IteratorResult;
throw(exception: any);
}


Support via polyfill

In order to use Generators you must include the Babel ​​polyfill​​.

  • Comprehensions

Removed in Babel 6.0

Unicode

Non-breaking additions to support full Unicode, including new unicode literal form in strings and new RegExp ​​u​​ mode to handle code points, as well as new APIs to process strings at the 21bit code points level. These additions support building global apps in JavaScript.



// same as ES5.1
"????".length == 2

// new RegExp behaviour, opt-in ‘u’
"????".match(/./u)[0].length == 2

// new form
"\u{20BB7}" == "????" == "\uD842\uDFB7"

// new String ops
"????".codePointAt(0) == 0x20BB7

// for-of iterates code points
for(var c of "????") {
console.log(c);
}


  • Modules

Language-level support for modules for component definition. Codifies patterns from popular JavaScript module loaders (AMD, CommonJS). Runtime behaviour defined by a host-defined default loader. Implicitly async model – no code executes until requested modules are available and processed.



// lib/math.js
export function sum(x, y) {
return x + y;
}
export var pi = 3.141593;



// app.js
import * as math from "lib/math";
console.log("2π = " + math.sum(math.pi, math.pi));



// otherApp.js
import {sum, pi} from "lib/math";
console.log("2π = " + sum(pi, pi));


Some additional features include ​​export default​​ and ​​export *​​:



// lib/mathplusplus.js
export * from "lib/math";
export var e = 2.71828182846;
export default function(x) {
return Math.exp(x);
}



// app.js
import exp, {pi, e} from "lib/mathplusplus";
console.log("e^π = " + exp(pi));


Module Formatters

Babel can transpile ES2015 Modules to several different formats including Common.js, AMD, System, and UMD. You can even create your own. For more details see the ​​modules docs​​.

  1. Module Loaders

Not part of ES2015

This is left as implementation-defined within the ECMAScript 2015 specification. The eventual standard will be in WHATWG's​​Loader specification​​, but that is currently a work in progress. What is below is from a previous ES2015 draft.

Module loaders support:

  • Dynamic loading
  • State isolation
  • Global namespace isolation
  • Compilation hooks
  • Nested virtualization

The default module loader can be configured, and new loaders can be constructed to evaluated and load code in isolated or constrained contexts.



// Dynamic loading – ‘System’ is default loader
System.import("lib/math").then(function(m) {
alert("2π = " + m.sum(m.pi, m.pi));
});

// Create execution sandboxes – new Loaders
var loader = new Loader({
global: fixup(window) // replace ‘console.log’
});
loader.eval("console.log(\"hello world!\");");

// Directly manipulate module cache
System.get("jquery");
System.set("jquery", Module({$: $})); // WARNING: not yet finalized


Additional polyfill needed

Since Babel defaults to using common.js modules, it does not include the polyfill for the module loader API. Get it ​​here​​.

Using Module Loader

In order to use this, you'll need to tell Babel to use the ​​system​​ module formatter. Also be sure to check out ​​System.js​

  1. Map + Set + WeakMap + WeakSet

Efficient data structures for common algorithms. WeakMaps provides leak-free object-key’d side tables.



// Sets
var s = new Set();
s.add("hello").add("goodbye").add("hello");
s.size === 2;
s.has("hello") === true;

// Maps
var m = new Map();
m.set("hello", 42);
m.set(s, 34);
m.get(s) == 34;

// Weak Maps
var wm = new WeakMap();
wm.set(s, { extra: 42 });
wm.size === undefined

// Weak Sets
var ws = new WeakSet();
ws.add({ data: 42 });
// Because the added object has no other references, it will not be held in the set


Support via polyfill

In order to support Maps, Sets, WeakMaps, and WeakSets in all environments you must include the Babel ​​polyfill​​.

  1. Proxies

Proxies enable creation of objects with the full range of behaviors available to host objects. Can be used for interception, object virtualization, logging/profiling, etc.



// Proxying a normal object
var target = {};
var handler = {
get: function (receiver, name) {
return `Hello, ${name}!`;
}
};

var p = new Proxy(target, handler);
p.world === "Hello, world!";



// Proxying a function object
var target = function () { return "I am the target"; };
var handler = {
apply: function (receiver, ...args) {
return "I am the proxy";
}
};

var p = new Proxy(target, handler);
p() === "I am the proxy";


There are traps available for all of the runtime-level meta-operations:



var handler =
{
// target.prop
get: ...,
// target.prop = value
set: ...,
// 'prop' in target
has: ...,
// delete target.prop
deleteProperty: ...,
// target(...args)
apply: ...,
// new target(...args)
construct: ...,
// Object.getOwnPropertyDescriptor(target, 'prop')
getOwnPropertyDescriptor: ...,
// Object.defineProperty(target, 'prop', descriptor)
defineProperty: ...,
// Object.getPrototypeOf(target), Reflect.getPrototypeOf(target),
// target.__proto__, object.isPrototypeOf(target), object instanceof target
getPrototypeOf: ...,
// Object.setPrototypeOf(target), Reflect.setPrototypeOf(target)
setPrototypeOf: ...,
// for (let i in target) {}
enumerate: ...,
// Object.keys(target)
ownKeys: ...,
// Object.preventExtensions(target)
preventExtensions: ...,
// Object.isExtensible(target)
isExtensible :...
}


Unsupported feature

Due to the limitations of ES5, Proxies cannot be transpiled or polyfilled. See support in ​​various JavaScript engines​​.

  1. Symbols

Symbols enable access control for object state. Symbols allow properties to be keyed by either ​​string​​ (as in ES5) or ​​symbol​​. Symbols are a new primitive type. Optional ​​name​​ parameter used in debugging - but is not part of identity. Symbols are unique (like gensym), but not private since they are exposed via reflection features like ​​Object.getOwnPropertySymbols​​.



(function() {

// module scoped symbol
var key = Symbol("key");

function MyClass(privateData) {
this[key] = privateData;
}

MyClass.prototype = {
doStuff: function() {
... this[key] ...
}
};

// Limited support from Babel, full support requires native implementation.
typeof key === "symbol"
})();

var c = new MyClass("hello")
c["key"] === undefined


Limited support via polyfill

Limited support requires the Babel ​​polyfill​​. Due to language limitations, some features can't be transpiled or polyfilled. See core.js's ​​caveats section​​ for more details.

  1. Subclassable Built-ins

In ES2015, built-ins like ​​Array​​, ​​Date​​ and DOM ​​Element​​s can be subclassed.



// User code of Array subclass
class MyArray extends Array {
constructor(...args) { super(...args); }
}

var arr = new MyArray();
arr[1] = 12;
arr.length == 2


Partial support

Built-in subclassability should be evaluated on a case-by-case basis as classes such as ​​HTMLElement​​ can be subclassed while many such as ​​Date​​, ​​Array​​ and ​​Error​​ cannot be due to ES5 engine limitations.

  • Math + Number + String + Object APIs

Many new library additions, including core Math libraries, Array conversion helpers, and Object.assign for copying.



Number.EPSILON
Number.isInteger(Infinity) // false
Number.isNaN("NaN") // false

Math.acosh(3) // 1.762747174039086
Math.hypot(3, 4) // 5
Math.imul(Math.pow(2, 32) - 1, Math.pow(2, 32) - 2) // 2

"abcde".includes("cd") // true
"abc".repeat(3) // "abcabcabc"

Array.from(document.querySelectorAll("*")) // Returns a real Array
Array.of(1, 2, 3) // Similar to new Array(...), but without special one-arg behavior
[0, 0, 0].fill(7, 1) // [0,7,7]
[1,2,3].findIndex(x => x == 2) // 1
["a", "b", "c"].entries() // iterator [0, "a"], [1,"b"], [2,"c"]
["a", "b", "c"].keys() // iterator 0, 1, 2
["a", "b", "c"].values() // iterator "a", "b", "c"

Object.assign(Point, { origin: new Point(0,0) })


Limited support from polyfill

Most of these APIs are supported by the Babel ​​polyfill​​. However, certain features are omitted for various reasons (e.g.​​String.prototype.normalize​​ needs a lot of additional code to support). You can find more polyfills ​​here​​.

  • Binary and Octal Literals

Two new numeric literal forms are added for binary (​​b​​) and octal (​​o​​).



0b111110111 === 503 // true
0o767 === 503 // true


Only supports literal form

Babel is only able to transform ​​0o767​​ and not ​​Number("0o767")​​.

  • Promises

Promises are a library for asynchronous programming. Promises are a first class representation of a value that may be made available in the future. Promises are used in many existing JavaScript libraries.



function timeout(duration = 0) {
return new Promise((resolve, reject) => {
setTimeout(resolve, duration);
})
}

var p = timeout(1000).then(() => {
return timeout(2000);
}).then(() => {
throw new Error("hmm");
}).catch(err => {
return Promise.all([timeout(100), timeout(200)]);
})


Support via polyfill

In order to support Promises you must include the Babel ​​polyfill​​.

  • Reflect API

Full reflection API exposing the runtime-level meta-operations on objects. This is effectively the inverse of the Proxy API, and allows making calls corresponding to the same meta-operations as the proxy traps. Especially useful for implementing proxies.



var O = {a: 1};
Object.defineProperty(O, 'b', {value: 2});
O[Symbol('c')] = 3;

Reflect.ownKeys(O); // ['a', 'b', Symbol(c)]

function C(a, b){
this.c = a + b;
}
var instance = Reflect.construct(C, [20, 22]);
instance.c; // 42


Support via polyfill

In order to use the Reflect API you must include the Babel ​​polyfill​​.

  • Tail Calls

Calls in tail-position are guaranteed to not grow the stack unboundedly. Makes recursive algorithms safe in the face of unbounded inputs.



function factorial(n, acc = 1) {
"use strict";
if (n <= 1) return acc;
return factorial(n - 1, n * acc);
}

// Stack overflow in most implementations today,
// but safe on arbitrary inputs in ES2015
factorial(100000)


Temporarily Removed in Babel 6

Only explicit self referencing tail recursion was supported due to the complexity and performance impact of supporting tail calls globally. Removed due to other bugs and will be re-implemented.