Dropping tests
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 8176   Accepted: 2862

Description

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

Dropping tests(01分数规划)_01分数规划.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is Dropping tests(01分数规划)_01分数规划_02. However, if you drop the third test, your cumulative average becomes Dropping tests(01分数规划)_i++_03.

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

Sample Input

3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0

Sample Output

83
100
题解:给你n个数,让求删除k个数后

Dropping tests(01分数规划)_01分数规划的最大值;01分数规划;

代码:

 1 #include<cstdio>
 2 #include<iostream>
 3 #include<algorithm>
 4 #include<cstring>
 5 #include<cmath>
 6 using namespace std;
 7 const int MAXN=10010;
 8 struct Node{
 9     int a,b;
10 };
11 Node dt[MAXN];
12 double d[MAXN];
13 int n,k;
14 bool fsgh(double R){
15     double sum=0;
16     for(int i=0;i<n;i++)d[i]=dt[i].a-R*dt[i].b;
17     sort(d,d+n);
18     for(int i=n-1;i>=n-k;i--)sum+=d[i];
19     return sum>0?true:false;
20 }
21 double erfen(double l,double r){
22     double mid;
23     while(r-l>1e-6){
24         mid=(l+r)/2;
25         if(fsgh(mid))l=mid;
26         else r=mid;
27     }
28     return mid;
29 }
30 int main(){
31     while(scanf("%d%d",&n,&k),n|k){
32         double mx=0;
33         k=n-k;
34         for(int i=0;i<n;i++)scanf("%d",&dt[i].a);
35         for(int i=0;i<n;i++)scanf("%d",&dt[i].b),mx=max(1.0*dt[i].a/dt[i].b,mx);
36         printf("%.0f\n",erfen(0,mx)*100);
37     }
38     return 0;
39 }