前言

使用缓存时,我们的业务系统大概的调用流程如下图:缓存穿透、缓存击穿、缓存雪崩_缓存击穿

考虑缓存系统,必定考虑以下三个问题:缓存穿透、缓存击穿与失效时的雪崩效应。

一、缓存穿透

查询一个一定不存在的数据,当我们查询一条数据时,先去查询缓存,如果缓存有就直接返回,如果没有就去查询数据库,然后返回。这种情况下就可能会出现一些现象。 换句话说,缓存和数据库都查不到该数据,所以每次请求都会打到数据库上。

1.1 穿透引发的问题

如果有黑客拿一个不存在的id去海量查询数据库,数据库会因为巨大的压力而宕机。

1.2 解决方案

1.2.1 缓存空值

之所以会发生穿透,就是因为缓存中没有存储这些空数据的key。从而导致每次查询都到数据库去了。 那么我们就可以为这些key对应的值设置为null 丢到缓存里面去。后面再出现查询这个key 的请求的时候,直接返回null 。 这样,就不用在到数据库中去走一圈了,但是别忘了设置过期时间。它的过期时间会很短,最长不超过五分钟。

1.2.2 布隆过滤器

BloomFilter 类似于一个hbase set 用来判断某个元素(key)是否存在于某个集合中。

这种方式在大数据场景应用比较多,比如 Hbase 中使用它去判断数据是否在磁盘上。还有在爬虫场景判断url 是否已经被爬取过。

这种方案可以加在第一种方案中,在缓存之前在加一层 BloomFilter ,在查询的时候先去 BloomFilter 去查询 key 是否存在,如果不存在就直接返回,存在再走查缓存 -> 查 DB。

将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被 这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。

流程图如下:
缓存穿透、缓存击穿、缓存雪崩_缓存穿透_02

1.3 如何选择

针对于一些恶意攻击,攻击带过来的大量key 是不存在的,那么我们采用第一种方案就会缓存大量不存在key的数据。

此时我们采用第一种方案就不合适了,我们完全可以先对使用第二种方案进行过滤掉这些key。

针对这种key异常多、请求重复率比较低的数据,我们就没有必要进行缓存,使用第二种方案直接过滤掉。
而对于空数据的key有限的,重复率比较高的,我们则可以采用第一种方式进行缓存。

二、缓存击穿

对于一些设置了过期时间的key,如果这些key可能会在某些时间点被超高并发地访问,是一种非常“热点”的数据。这个时候,需要考虑一个问题:缓存被“击穿”的问题,这个和缓存雪崩的区别在于这里针对某一key缓存,前者则是很多key。

缓存在某个时间点过期的时候,恰好在这个时间点对这个Key有大量的并发请求过来,这些请求发现缓存过期一般都会从后端DB加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压垮。

在平常高并发的系统中,大量的请求同时查询一个 key 时,此时这个key正好失效了,就会导致大量的请求都打到数据库上面去。这种现象我们称为缓存击穿。

2.1 解决方案

上面的现象是多个线程同时去查询数据库的这条数据,那么我们可以在第一个查询数据的请求上使用一个 互斥锁来锁住它。

其他的线程走到这一步拿不到锁就等着,等第一个线程查询到了数据,然后做缓存。后面的线程进来发现已经有缓存了,就直接走缓存。

三、缓存雪崩

缓存雪崩是指在我们设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到DB,DB瞬时压力过重雪崩。

缓存雪崩的情况是说,当某一时刻发生大规模的缓存失效的情况,比如你的缓存服务宕机了,会有大量的请求进来直接打到DB上面。结果就是DB 称不住,挂掉。

3.1解决方案

缓存失效时的雪崩效应对底层系统的冲击非常可怕。大多数系统设计者考虑用加锁或者队列的方式保证缓存的单线 程(进程)写,从而避免失效时大量的并发请求落到底层存储系统上。这里分享一个简单方案就时讲缓存失效时间分散开,比如我们可以在原有的失效时间基础上增加一个随机值,比如1-5分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。

缓存穿透、缓存击穿、缓存雪崩_缓存穿透_03