**步骤概览**
下面是部署GPU云服务器的基本步骤概览:
| 步骤 | 描述 |
|------|---------------------------------|
| 1 | 安装NVIDIA GPU驱动 |
| 2 | 安装NVIDIA Container Toolkit |
| 3 | 部署NVIDIA Device Plugin |
| 4 | 部署GPU云服务器应用程序 |
**具体步骤**
1. **安装NVIDIA GPU驱动**
首先要确保在你的云服务器中安装了适用于你的GPU型号的NVIDIA驱动程序。可以通过以下命令来安装NVIDIA GPU驱动:
```bash
sudo apt-get update
sudo apt-get install -y nvidia-driver-460
```
2. **安装NVIDIA Container Toolkit**
NVIDIA Container Toolkit是一组用于与NVIDIA GPU一起工作的容器运行时工具。可以通过以下命令来安装NVIDIA Container Toolkit:
```bash
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker
```
3. **部署NVIDIA Device Plugin**
NVIDIA Device Plugin是一个K8S插件,用于在集群中发现GPU设备并为Pod调度提供GPU资源。可以通过以下命令来部署NVIDIA Device Plugin:
```yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: nvidia-fxed-plugin-config
namespace: kube-system
data:
config.json: |
{
"featureGates": ""
}
---
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: nvidia-device-plugin-daemonset
namespace: kube-system
spec:
selector:
matchLabels:
name: nvidia-device-plugin-ds
template:
metadata:
labels:
name: nvidia-device-plugin-ds
spec:
containers:
- name: nvidia-device-plugin-ctr
image: k8s.gcr.io/nvidia/k8s-device-plugin:v0.11
securityContext:
privileged: true
```
4. **部署GPU云服务器应用程序**
最后,可以部署需要使用GPU资源的应用程序。在Pod定义中添加```resources```字段来请求GPU资源,例如:
```yaml
apiVersion: v1
kind: Pod
metadata:
name: gpu-app
spec:
containers:
- name: gpu-container
image: nvidia/cuda:11.0-base
resources:
limits:
nvidia.com/gpu: 1
```
通过以上步骤,你就可以成功在K8S中部署GPU云服务器了。记得要针对不同的GPU型号和K8S版本进行适当的调整。祝你的GPU计算顺利!