又是一道经典题.
1.学习了下O(n) 的做法。
// // main.cpp // bzoj2154 // // Created by New_Life on 16/7/7. // Copyright © 2016年 chenhuan001. All rights reserved. // #include <iostream> #include <string.h> #include <stdio.h> using namespace std; #define N 10001000 #define MOD 20101009 //--莫比乌斯反演函数--// //说明:利用线性素数筛选顺便求了个mu //注释部分为求从区间[1,b]和区间[1,d]中取两个数,互质对数O(n^0.5) //复杂度:O(n) int mu[N]; long long sum[N]; int prime[N]; bool mark[N]; void mobus() { int pcnt=0; memset(mark,0,sizeof(mark)); mu[1] = 1; for(int i=2;i<N;i++) { if(mark[i] == 0) { prime[pcnt++] = i; mu[i] = -1; } for(int j=0;j<pcnt && i*prime[j]<N;j++) { int tmp = i*prime[j]; mark[tmp] = 1; if( i%prime[j] == 0 ) { mu[tmp] = 0; break; } mu[tmp] = mu[i]*-1; } } for(int i=1;i<N;i++) { sum[i] += sum[i-1]+(long long)mu[i]*i*i; sum[i] %= MOD; } } long long gaobili(long long b,long long d) { if(b<=0||d<=0) return 0; long long m = min(b,d); long long ans = 0; while(m>=1) { long long tb = b/( b/m +1 )+1; long long td = d/( d/m +1 )+1; //前进的最大位置 long long tm = max(tb,td); ans += (sum[m]-sum[tm-1])*(((b/m+1)*(b/m)/2)%MOD)%MOD*(((d/m+1)*(d/m)/2)%MOD)%MOD ; ans %= MOD; m = tm-1; } return ans; } //等差数列求和模板,[a1,a1+d,...,an] long long allsum(long long a1,long long an,long long n) { if(n%2==0) return (a1+an)*(n/2); else return ((a1+an)/2)*n; } int main(int argc, const char * argv[]) { mobus(); int b,d; while(scanf("%d%d",&b,&d)!=EOF) { int m = min(b,d); long long ans = 0; while(m>=1) { int tb = b/( b/m +1 )+1; int td = d/( d/m +1 )+1; //前进的最大位置 int tm = max(tb,td); ans += allsum(tm,m,m-tm+1)%MOD*gaobili(b/m, d/m)%MOD; ans %= MOD; m = tm-1; } cout<<(ans+MOD)%MOD<<endl; } return 0; } /* 4 5 */
2.O(n)预处理,每次查询n^0.5
因为bzoj2693题目找不到了,所以直接用了这题来测试。
这题首先是一个经典的公式变形。 交换连加时变量的位置。
而根据第二个重要的性质,乘性函数的乘除之后还是乘性函数。(加减并不是)
所以后面的连加部分也是乘性函数,这时只需要的单独看只含一个因子的时候,因为里面含有u(i),所以对于D=x^k(x是素因子)只有当i = 1 或 x 时不为0,所以
后面的为x^k(1-x)。这时可以在线性筛选时顺便求出来。
************************************************************** Problem: 2154 User: chenhuan001 Language: C++ Result: Accepted Time:16668 ms Memory:93088 kb ****************************************************************/ #include <stdio.h> #include <string.h> #include <stdlib.h> #include <algorithm> #include <iostream> using namespace std; //--莫比乌斯反演函数--// //说明:利用线性素数筛选顺便求了个mu //注释部分为求从区间[1,b]和区间[1,d]中取两个数,互质对数O(n^0.5) //复杂度:O(n) #define N 10000010 bool mark[N]; int prime[N/10]; long long sum[N]; #define MOD 20101009 void mobus() { int pcnt=0; sum[1] = 1; for(int i=2;i<N;i++) { if(mark[i] == 0) { prime[pcnt++] = i; sum[i] = (long long)i*(1-i)%MOD; } for(int j=0;j<pcnt && i*prime[j]<N;j++) { int tmp = i*prime[j]; mark[tmp] = 1; if( i%prime[j] == 0 ) { sum[tmp] = sum[i]*prime[j]; sum[tmp] %= MOD; break; } else { sum[tmp] = sum[i]*(sum[prime[j]])%MOD; } } } for(int i=1;i<N;i++) sum[i] = (sum[i]+sum[i-1])%MOD; } long long gaobili(int b,int d) { if(b<=0||d<=0) return 0; long long m = min(b,d); long long ans = 0; while(m>=1) { long long tb = b/( b/m +1 )+1; long long td = d/( d/m +1 )+1; //前进的最大位置 long long tm = max(tb,td); ans += (sum[m]-sum[tm-1])*(((b/m+1)*(b/m)/2)%MOD)%MOD*(((d/m+1)*(d/m)/2)%MOD)%MOD; ans %= MOD; m = tm-1; } return (ans+MOD)%MOD; } int main() { mobus(); int b,d; while(scanf("%d%d",&b,&d)!=EOF) { printf("%d\n",(int)gaobili(b,d)); } return 0; }
至此mobus大概都刷了一遍,原以为很复杂的东西,其实也不是很难。以后面对的题目可能有更多的公式变形,或许难在找出莫比乌斯模型。但基本的也就是这些方法了。
治好了多年的公式恐惧症。。