最近在看GCN相关的论文,按照谱方法、非谱方法和几个框架的结构总结了一下。推荐给大家,有时间的话可以读一下。

综述类

Deep Learning on Graphs: A Survey

   Ziwei Zhang, Peng Cui, Wenwu Zhu

Graph Neural Networks: A Review of Methods and Application

   Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Maosong Sun

谱方法

SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS

   ThomasN.Kipf,Max Welling

Convolutional Neural Networkson Graphs with Fast Localized Spectral Filtering

  Mich   aël Defferrard, Xavier Bresson, Pierre Vandergheynst

非谱方法

**PATCHY-SAN **

Learning Convolutional Neural Networks for Graphs

Mathias Niepert, Mohamed Ahmed ,Konstantin Kutzko ** Neural FPs **

Convolutional networks on graphs for learning molecular fingerprints

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik

**DCNN **

Diffusion-ConvolutionalNeuralNetworks

James Atwood, Don Towsley.

**DGCN **

Dual Graph Convolutional Networks for Graph-Based Semi-Supervised Classification

ChenyiZhuang,QiangMa

框架

**MONET **

Geometric deep learning on graphs and manifolds using mixture model CNNs

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodolà, Jan Svoboda, Michael M. Bronstein

GNs

Relational inductive biases, deep learning, and graph networks

Battaglia, Peter W and Hamrick, Jessica B and Bapst, Victor and Sanchez-Gonzalez, Alvaro and Zambaldi, Vinicius and Malinowski, Mateusz and Tacchetti, Andrea and Raposo, David and Santoro, Adam and Faulkner, Ryan and others.

MPNNS

Neural Message Passing for Quantum Chemistry

Gilmer, Justin and Schoenholz, Samuel S and Riley, Patrick F and Vinyals, Oriol and Dahl, George E

**graphsage **

Inductive Representation Learning on Large Graphs

William L. Hamilton, Rex Ying, Jure Leskovec

上面只是总结了我看的相关的论文,GCN还有很多模型待看,但是整体的思路可以分成上面谱方法和非谱方法的分类来看。