今天来看大家介绍树,树是一种非线性的数据结构,树是由n个结点组成的有限集合,如果n=0,称为空树;如果n>0,则:有一个特定的称之为根的结点,它只有直接后继,但没有直接前驱;除根以外的其他结点划分为m个互不相交的有限集合,每个集合又是一棵树,并且称之为根的子树。

 

      如图

              一步一步学数据结构之1--n(通用树)_#include

 

      树的一些基本概念

 

l 树的结点包含一个数据以及若干指向子树的分支

l 结点拥有的子树数称为结点的度

u 度为0的结点称为叶结点

u 度不为0的结点称为分支结点

l 树的度定义为所有结点中的度的最大值

l 结点的直接后继称为该结点的孩子

u 相应的,该结点称为孩子的双亲

l 结点的孩子的孩子的.....称为该结点的子孙

u 相应的,该结点称为子孙的祖先

l 同一个双亲的孩子之间互称兄弟

l 树中结点的最大层次称为树的深度或高度

l 森林是由n(n>=0)棵互不相交的树组成的集合

 

在这里,我们用通用树结构来给大家介绍树的一些基本操作和操作实现。通用树的存储结构为:

   一步一步学数据结构之1--n(通用树)_结点_02

 

 

 

这里介绍通用树的常用操作:

 

l 创建树

l 销毁树

l 清空树

l 插入结点到树中

l 删除结点

l 获取某个结点

l 获取根结点

l 获取树的高度

l 获取总结点数

l 获取树的度

l 输出树

 

 

代码总分为三个文件:

GTree.h : 放置功能函数的声明,以及树的声明,以及数据的声明 

GTree.c : 放置功能函数的定义,以及树结点和组织链表结点的定义

Main.c   : 主函数,使用功能函数完成各种需求,一般用作测试

 

整体结构图为:

 一步一步学数据结构之1--n(通用树)_子树_03

 

 

这里详细说下插入结点操作,删除结点操作:

 

插入结点操作:

一步一步学数据结构之1--n(通用树)_删除结点_04

 

如图:

 

  一步一步学数据结构之1--n(通用树)_#include_05

删除结点操作:

一步一步学数据结构之1--n(通用树)_#include_06

 

如图:

 

一步一步学数据结构之1--n(通用树)_#include_07

 

 

OK! 上代码:

 

GTree.h : 

#ifndef _GTREE_H_
#define _GTREE_H_

typedef void GTree;
typedef void GTreeData;
typedef void (GTree_Printf)(GTreeData*);

GTree* GTree_Create();

void GTree_Destroy(GTree* tree);

void GTree_Clear(GTree* tree);

int GTree_Insert(GTree* tree, GTreeData* data, int pPos);

GTreeData* GTree_Delete(GTree* tree, int pos);

GTreeData* GTree_Get(GTree* tree, int pos);

GTreeData* GTree_Root(GTree* tree);

int GTree_Height(GTree* tree);

int GTree_Count(GTree* tree);

int GTree_Degree(GTree* tree);

void GTree_Display(GTree* tree, GTree_Printf* pFunc, int gap, char div);

#endif

 

GTree.c : 

#include <stdio.h>
#include <malloc.h>
#include "GTree.h"
#include "LinkList.h"

typedef struct _tag_GTreeNode GTreeNode;
struct _tag_GTreeNode
{
GTreeData* data;
GTreeNode* parent;
LinkList* child;
};

typedef struct _tag_TLNode TLNode;
struct _tag_TLNode
{
LinkListNode header;
GTreeNode* node;
};

GTree* GTree_Create()
{
return LinkList_Create();
}

void GTree_Destroy(GTree* tree)
{
GTree_Clear(tree);

LinkList_Destroy(tree);
}

void GTree_Clear(GTree* tree)
{
GTree_Delete(tree, 0);
}

int GTree_Insert(GTree* tree, GTreeData* data, int pPos)
{
LinkList* list = (LinkList*)tree;

int ret = (NULL!=list) && (NULL!=data) && (pPos<LinkList_Length(list));

if(ret)
{
TLNode* trNode = (TLNode*)malloc(sizeof(TLNode));
TLNode* cldNode = (TLNode*)malloc(sizeof(TLNode));
TLNode* pNode = (TLNode*)LinkList_Get(list, pPos);

GTreeNode* cNode = (GTreeNode*)malloc(sizeof(GTreeNode));

ret = (NULL!=trNode) && (NULL!=cldNode) && (NULL!=cNode);

if(ret)
{
cNode->data = data;
cNode->parent = NULL;
cNode->child = LinkList_Create();

trNode->node = cNode;
cldNode->node = cNode;

LinkList_Insert(list, (LinkListNode*)trNode, LinkList_Length(list));

if(NULL != pNode)
{
cNode->parent = pNode->node;

LinkList_Insert(pNode->node->child, (LinkListNode*)cldNode, LinkList_Length(pNode->node->child));
}
else
{
free(cldNode);
}
}
else
{
free(trNode);
free(cldNode);
free(cNode);
}
}

return ret;
}

static int recursive_height(GTreeNode* node)
{
int ret = 0;

if(NULL != node)
{
int subHeight = 0;
int i = 0;

for(i=0; i<LinkList_Length(node->child); i++)
{
TLNode* trNode = (TLNode*)LinkList_Get(node->child, i);

subHeight = recursive_height(trNode->node);

if(ret < subHeight)
{
ret = subHeight;
}
}

ret = ret+1;
}

return ret;
}


int GTree_Height(GTree* tree)
{
TLNode* trNode = (TLNode*)LinkList_Get(tree, 0);

int ret = 0;

if(NULL != trNode)
{
ret = recursive_height(trNode->node);
}

return ret;
}

static void recursive_delete(LinkList* list, GTreeNode* node)
{
if((NULL != list) && (NULL != node))
{
GTreeNode* parent = node->parent;

int index = -1;
int i = 0;

for(i=0; i<LinkList_Length(list); i++)
{
TLNode* trNode = (TLNode*)LinkList_Get(list, i);

if(node == trNode->node)
{
LinkList_Delete(list, i);
free(trNode);
index = i;

break;
}
}

if(0 <= index)
{
if(NULL != parent)
{
for(i=0; i<LinkList_Length(parent->child); i++)
{
TLNode* trNode = (TLNode*)LinkList_Get(parent->child, i);

if(node == trNode->node)
{
LinkList_Delete(parent->child, i);
free(trNode);

break;
}
}
}

while(0 < LinkList_Length(node->child))
{
TLNode* trNode = (TLNode*)LinkList_Get(node->child, 0);

recursive_delete(list, trNode->node);
}

LinkList_Destroy(node->child);
free(node);
}
}
}

GTreeData* GTree_Delete(GTree* tree, int pos)
{
TLNode* trNode = (TLNode*)LinkList_Get(tree, pos);

GTreeData* ret = NULL;

if(NULL != trNode)
{
ret = trNode->node->data;

recursive_delete(tree, trNode->node);
}

return ret;
}

GTreeData* GTree_Get(GTree* tree, int pos)
{
TLNode* trNode = (TLNode*)LinkList_Get(tree, pos);

GTreeData* ret = NULL;

if(NULL != trNode)
{
ret = trNode->node->data;
}

return ret;
}

GTreeData* GTree_Root(GTree* tree)
{
return GTree_Delete(tree, 0);
}

int GTree_Count(GTree* tree)
{
return LinkList_Length(tree);
}

static int recursive_degree(GTreeNode* node)
{
int ret = -1;

if(NULL != node)
{
int subDegree = 0;
int i = 0;

ret = LinkList_Length(node->child);

for(i=0; i<LinkList_Length(node->child); i++)
{
TLNode* trNode = (TLNode*)LinkList_Get(node->child, i);

subDegree = recursive_degree(trNode->node);

if(ret < subDegree)
{
ret = subDegree;
}
}
}

return ret;
}

int GTree_Degree(GTree* tree)
{
TLNode* trNode = (TLNode*)LinkList_Get(tree, 0);

int ret = -1;

if(NULL != trNode)
{
ret = recursive_degree(trNode->node);
}

return ret;
}

static void recursive_display(GTreeNode* node, GTree_Printf* pFunc, int format, int gap, char div)
{
int i = 0;

if((NULL != node) && (NULL != pFunc))
{
for(i=0; i<format; i++)
{
printf("%c", div);
}

pFunc(node->data);
printf("\n");

for(i=0; i<LinkList_Length(node->child); i++)
{
TLNode* trNode = (TLNode*)LinkList_Get(node->child, i);

recursive_display(trNode->node, pFunc, format+gap, gap, div);
}
}
}

void GTree_Display(GTree* tree, GTree_Printf* pFunc, int gap, char div)
{
TLNode* trNode = (TLNode*)LinkList_Get(tree, 0);

if((NULL != trNode) && (NULL != pFunc))
{
recursive_display(trNode->node, pFunc, 0, gap, div);
}
}

 

Main.c  :

             

#include <stdio.h>
#include "GTree.h"

void printf_data(GTreeData* data)
{
printf("%c", (int)data);
}

int main(void)
{
GTree* tree = GTree_Create();

int i = 0;

GTree_Insert(tree, (GTreeData*)'A', -1);
GTree_Insert(tree, (GTreeData*)'B', 0);
GTree_Insert(tree, (GTreeData*)'C', 0);
GTree_Insert(tree, (GTreeData*)'D', 0);
GTree_Insert(tree, (GTreeData*)'E', 1);
GTree_Insert(tree, (GTreeData*)'F', 1);
GTree_Insert(tree, (GTreeData*)'H', 3);
GTree_Insert(tree, (GTreeData*)'I', 3);
GTree_Insert(tree, (GTreeData*)'J', 3);

printf("Tree Height: %d\n", GTree_Height(tree));
printf("Tree Degree: %d\n", GTree_Degree(tree));
printf("Full Tree:\n");

GTree_Display(tree, printf_data, 2, '-');

printf("Get Tree Data: \n");

for(i=0; i<GTree_Count(tree); i++)
{
printf_data(GTree_Get(tree, i));
printf("\n");
}

printf("Get Root Data: \n");

printf_data(GTree_Root(tree));
printf("\n");

GTree_Delete(tree, 3);
printf("After Deleting D: \n");
GTree_Display(tree, printf_data, 2, '-');

GTree_Clear(tree);

printf("After Clearing Tree:\n");

GTree_Display(tree, printf_data, 2, '.');

GTree_Destroy(tree);

return 0;
}